19 research outputs found

    MEGA Vision: Integrating Reef Photogrammetry Data into Immersive Mixed Reality Experiences

    Get PDF
    Coral reefs and submerged cultural heritage sites are integral to supporting marine biodiversity, preserving human history, providing ecosystem services, and understanding drivers of ecosystem health and function. Despite the importance of these submerged underwater habitats, accessibility to these environments remains limited to specialized professionals. The MEGA Vision mixed reality application integrates photogrammetry-derived data products with augmented reality (AR) technologies to transcend this barrier, offering an immersive and educational platform for the broader public. Using high-resolution imagery from SCUBA expeditions, the app presents users with realistic and spatially accurate 3D reconstructions of coral reefs and submerged archaeological artifacts within an interactive interface developed through Unity and Vuforia. The applications’ instructional design includes multimedia elements for enhancing user comprehension of marine and historical sciences. This mixed reality tool exemplifies the convergence of scientific data visualization and public engagement, offering a unique educational tool that demystifies the complexities of marine ecosystems and maritime history, thereby fostering a deeper appreciation and stewardship of underwater environments. By enabling accessible, interactive, and immersive experiences, the application has the potential to revolutionize the way we interact with and contribute to marine sciences, aligning technology with conservation and research efforts to cultivate a more informed and environmentally conscious public

    Plasticity of streptomyces coelicolor membrane composition under different growth conditions and during development

    Get PDF
    Streptomyces coelicolor is a model actinomycete that is well known for the diversity of its secondary metabolism and its complex life cycle. As a soil inhabitant, it is exposed to heterogeneous and frequently changing environmental circumstances. In the present work, we studied the effect of diverse growth conditions and phosphate depletion on its lipid profile and the relationship between membrane lipid composition and development in S. coelicolor. The lipid profile from cultures grown on solid media, which is closer to the natural habitat of this microorganism, does not resemble the previously reported lipid composition from liquid grown cultures of S. coelicolor. Wide variations were also observed across different media, growth phases, and developmental stages indicating active membrane remodeling. Ornithine lipids (OL) are phosphorus-free polar lipids that were accumulated mainly during sporulation stages, but were also major components of the membrane under phosphorus limitation. In contrast, phosphatidylethanolamine, which had been reported as one of the major polar lipids in the genus Streptomyces, is almost absent under these conditions. We identified one of the genes responsible for the synthesis of OL (SCO0921) and found that its inactivation causes the absence of OL, precocious morphological development and actinorhodin production. Our observations indicate a remarkable plasticity of the membrane composition in this bacterial species, reveal a higher metabolic complexity than expected, and suggest a relationship between cytoplasmic membrane components and the differentiation programs in S. coelicolor

    Mass Spectrometry Based Molecular 3D-Cartography of Plant Metabolites

    Get PDF
    Plants play an essential part in global carbon fixing through photosynthesis and are the primary food and energy source for humans. Understanding them thoroughly is therefore of highest interest for humanity. Advances in DNA and RNA sequencing and in protein and metabolite analysis allow the systematic description of plant composition at the molecular level. With imaging mass spectrometry, we can now add a spatial level, typically in the micrometer-to-centimeter range, to their compositions, essential for a detailed molecular understanding. Here we present an LC-MS based approach for 3D plant imaging, which is scalable and allows the analysis of entire plants. We applied this approach in a case study to pepper and tomato plants. Together with MS/MS spectra library matching and spectral networking, this non-targeted workflow provides the highest sensitivity and selectivity for the molecular annotations and imaging of plants, laying the foundation for studies of plant metabolism and plant-environment interactions

    Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking

    Get PDF
    The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry techniques are well-suited to high-throughput characterization of natural products, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social molecular networking (GNPS, http://gnps.ucsd.edu), an open-access knowledge base for community wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of ‘living data’ through continuous reanalysis of deposited data
    corecore