18 research outputs found

    The Influence of Canalization on the Robustness of Boolean Networks

    Full text link
    Time- and state-discrete dynamical systems are frequently used to model molecular networks. This paper provides a collection of mathematical and computational tools for the study of robustness in Boolean network models. The focus is on networks governed by kk-canalizing functions, a recently introduced class of Boolean functions that contains the well-studied class of nested canalizing functions. The activities and sensitivity of a function quantify the impact of input changes on the function output. This paper generalizes the latter concept to cc-sensitivity and provides formulas for the activities and cc-sensitivity of general kk-canalizing functions as well as canalizing functions with more precisely defined structure. A popular measure for the robustness of a network, the Derrida value, can be expressed as a weighted sum of the cc-sensitivities of the governing canalizing functions, and can also be calculated for a stochastic extension of Boolean networks. These findings provide a computationally efficient way to obtain Derrida values of Boolean networks, deterministic or stochastic, that does not involve simulation.Comment: 16 pages, 2 figures, 3 table

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined

    Assessing the danger of self-sustained HIV epidemics in heterosexuals by population based phylogenetic cluster analysis.

    Get PDF
    Assessing the danger of transition of HIV transmission from a concentrated to a generalized epidemic is of major importance for public health. In this study, we develop a phylogeny-based statistical approach to address this question. As a case study, we use this to investigate the trends and determinants of HIV transmission among Swiss heterosexuals. We extract the corresponding transmission clusters from a phylogenetic tree. To capture the incomplete sampling, the delayed introduction of imported infections to Switzerland, and potential factors associated with basic reproductive number R0, we extend the branching process model to infer transmission parameters. Overall, the R0 is estimated to be 0.44 (95%-confidence interval 0.42-0.46) and it is decreasing by 11% per 10 years (4%-17%). Our findings indicate rather diminishing HIV transmission among Swiss heterosexuals far below the epidemic threshold. Generally, our approach allows to assess the danger of self-sustained epidemics from any viral sequence data

    The influence of canalization on the robustness of Boolean networks

    No full text
    Time- and state-discrete dynamical systems are frequently used to model molecular networks. This paper provides a collection of mathematical and computational tools for the study of robustness in Boolean network models. The focus is on networks governed by k role= presentation \u3e-canalizing functions, a recently introduced class of Boolean functions that contains the well-studied class of nested canalizing functions. The variable activities and sensitivity of a function quantify the impact of input changes on the function output. This paper generalizes the latter concept to c role= presentation \u3e-sensitivity and provides formulas for the activities and c role= presentation \u3e-sensitivity of general k role= presentation \u3e-canalizing functions as well as canalizing functions with more precisely defined structure. A popular measure for the robustness of a network, the Derrida value, can be expressed as a weighted sum of the c role= presentation \u3e-sensitivities of the governing canalizing functions, and can also be calculated for a stochastic extension of Boolean networks. These findings provide a computationally efficient way to obtain Derrida values of Boolean networks, deterministic or stochastic, that does not involv

    Importance of routine viral load monitoring: higher levels of resistance at ART failure in Uganda and Lesotho compared with Switzerland.

    No full text
    Emerging resistance to antiretroviral drugs may jeopardize the achievements of improved access to ART. We compared the prevalence of different resistance mutations in HIV-infected adults with virological failure in a cohort with regular routine viral load (VL) monitoring (Switzerland) and cohorts with limited access to VL testing (Uganda and Lesotho). We considered individuals who had genotypic resistance testing (GRT) upon virological failure (≥1000 copies/mL) and were on ART consisting of at least one NNRTI and two NRTIs. From Lesotho, individuals with two subsequent VLs ≥1000 copies/mL despite enhanced adherence counselling (n = 58) were included in the analysis. From Uganda, individuals with a single VL ≥1000 copies/mL (n = 120) were included in the analysis. From the Swiss HIV Cohort Study (SHCS), a population without history of monotherapy or dual therapy with the first GRT upon virological failure (n = 61) was selected. We found that 50.8% of individuals in the SHCS, 72.5% in Uganda and 81.0% in Lesotho harboured HIV with high-level resistance to at least two drugs from their current regimen. Stanford resistance scores were higher in Uganda compared with Switzerland for all drugs used in first-line treatment except zidovudine and tenofovir (P < 0.01) and higher in Lesotho compared with Uganda for all drugs used in first-line treatment except zidovudine (P < 0.01). Frequent VL monitoring and possibly pretreatment GRT as done in the SHCS pays off by low levels of resistance even when treatment failure occurs. The high-level resistance patterns in Lesotho compared with Uganda could reflect a selection of strains with multiple resistance during enhanced adherence counselling

    Determinants of HIV-1 broadly neutralizing antibody induction.

    No full text
    Broadly neutralizing antibodies (bnAbs) are a focal component of HIV-1 vaccine design, yet basic aspects of their induction remain poorly understood. Here we report on viral, host and disease factors that steer bnAb evolution using the results of a systematic survey in 4,484 HIV-1-infected individuals that identified 239 bnAb inducers. We show that three parameters that reflect the exposure to antigen-viral load, length of untreated infection and viral diversity-independently drive bnAb evolution. Notably, black participants showed significantly (P = 0.0086-0.038) higher rates of bnAb induction than white participants. Neutralization fingerprint analysis, which was used to delineate plasma specificity, identified strong virus subtype dependencies, with higher frequencies of CD4-binding-site bnAbs in infection with subtype B viruses (P = 0.02) and higher frequencies of V2-glycan-specific bnAbs in infection with non-subtype B viruses (P = 1 × 10(-5)). Thus, key host, disease and viral determinants, including subtype-specific envelope features that determine bnAb specificity, remain to be unraveled and harnessed for bnAb-based vaccine design
    corecore