5,486 research outputs found

    Solar Irradiance Variability is Caused by the Magnetic Activity on the Solar Surface

    Full text link
    The variation in the radiative output of the Sun, described in terms of solar irradiance, is important to climatology. A common assumption is that solar irradiance variability is driven by its surface magnetism. Verifying this assumption has, however, been hampered by the fact that models of solar irradiance variability based on solar surface magnetism have to be calibrated to observed variability. Making use of realistic three-dimensional magnetohydrodynamic simulations of the solar atmosphere and state-of-the-art solar magnetograms from the Solar Dynamics Observatory, we present a model of total solar irradiance (TSI) that does not require any such calibration. In doing so, the modeled irradiance variability is entirely independent of the observational record. (The absolute level is calibrated to the TSI record from the Total Irradiance Monitor.) The model replicates 95% of the observed variability between April 2010 and July 2016, leaving little scope for alternative drivers of solar irradiance variability at least over the time scales examined (days to years).Comment: Supplementary Materials; https://journals.aps.org/prl/supplemental/10.1103/PhysRevLett.119.091102/supplementary_material_170801.pd

    Microwave state transfer and adiabatic dynamics of magnetically trapped polar molecules

    Full text link
    Cold and ultracold polar molecules with nonzero electronic angular momentum are of great interest for studies in quantum chemistry and control, investigations of novel quantum systems, and precision measurement. However, in mixed electric and magnetic fields, these molecules are generically subject to a large set of avoided crossings among their Zeeman sublevels; in magnetic traps, these crossings lead to distorted potentials and trap loss from electric bias fields. We have characterized these crossings in OH by microwave-transferring trapped OH molecules from the upper |f; M = +3/2> parity state to the lower |e; +3/2> state and observing their trap dynamics under an applied electric bias field. Our observations are very well described by a simple Landau-Zener model, yielding insight to the rich spectra and dynamics of polar radicals in mixed external fields.Comment: 5 pages, 4 figures plus supplementary materia

    First-Order Transition and Critical End-Point in Vortex Liquids in Layered Superconductors

    Full text link
    We calculate various thermodynamic quantities of vortex liquids in a layered superconductor by using the nonperturbative parquet approximation method, which was previously used to study the effect of thermal fluctuations in two-dimensional vortex systems. We find there is a first-order transition between two vortex liquid phases which differ in the magnitude of their correlation lengths. As the coupling between the layers increases,the first-order transition line ends at a critical point. We discuss the possible relation between this critical end-point and the disappearance of the first-order transition which is observed in experiments on high temperature superconductors at low magnetic fields.Comment: 9 pages, 5 figure

    Reconstruction of spectral solar irradiance since 1700 from simulated magnetograms

    Full text link
    We present a reconstruction of the spectral solar irradiance since 1700 using the SATIRE-T2 (Spectral And Total Irradiance REconstructions for the Telescope era version 2) model. This model uses as input magnetograms simulated with a surface flux transport model fed with semi-synthetic records of emerging sunspot groups. We used statistical relationships between the properties of sunspot group emergence, such as the latitude, area, and tilt angle, and the sunspot cycle strength and phase to produce semi-synthetic sunspot group records starting in the year 1700. The semisynthetic records are fed into a surface flux transport model to obtain daily simulated magnetograms that map the distribution of the magnetic flux in active regions (sunspots and faculae) and their decay products on the solar surface. The magnetic flux emerging in ephemeral regions is accounted for separately based on the concept of extended cycles whose length and amplitude are linked to those of the sunspot cycles through the sunspot number. The magnetic flux in each surface component (sunspots, faculae and network, and ephemeral regions) was used to compute the spectral and total solar irradiance between the years 1700 and 2009. This reconstruction is aimed at timescales of months or longer although the model returns daily values. We found that SATIRE-T2, besides reproducing other relevant observations such as the total magnetic flux, reconstructs the total solar irradiance (TSI) on timescales of months or longer in good agreement with the PMOD composite of observations, as well as with the reconstruction starting in 1878 based on the RGO-SOON data. The model predicts an increase in the TSI of 1.2[+0.2, -0.3] Wm-2 between 1700 and the present. The spectral irradiance reconstruction is in good agreement with the UARS/SUSIM measurements as well as the Lyman-alpha composite.Comment: 13 pages, 10 figure

    UV solar irradiance in observations and the NRLSSI and SATIRE-S models

    Full text link
    Total solar irradiance and UV spectral solar irradiance have been monitored since 1978 through a succession of space missions. This is accompanied by the development of models aimed at replicating solar irradiance by relating the variability to solar magnetic activity. The NRLSSI and SATIRE-S models provide the most comprehensive reconstructions of total and spectral solar irradiance over the period of satellite observation currently available. There is persistent controversy between the various measurements and models in terms of the wavelength dependence of the variation over the solar cycle, with repercussions on our understanding of the influence of UV solar irradiance variability on the stratosphere. We review the measurement and modelling of UV solar irradiance variability over the period of satellite observation. The SATIRE-S reconstruction is consistent with spectral solar irradiance observations where they are reliable. It is also supported by an independent, empirical reconstruction of UV spectral solar irradiance based on UARS/SUSIM measurements from an earlier study. The weaker solar cycle variability produced by NRLSSI between 300 and 400 nm is not evident in any available record. We show that although the method employed to construct NRLSSI is principally sound, reconstructed solar cycle variability is detrimentally affected by the uncertainty in the SSI observations it draws upon in the derivation. Based on our findings, we recommend, when choosing between the two models, the use of SATIRE-S for climate studies

    Low-energy molecular collisions in a permanent magnetic trap

    Full text link
    Cold, neutral hydroxyl radicals are Stark decelerated and confined within a magnetic trap consisting of two permanent ring magnets. The OH molecules are trapped in the ro-vibrational ground state at a density of ∼106\sim10^{6} cm−3^{-3} and temperature of 70 mK. Collisions between the trapped OH sample and supersonic beams of atomic He and molecular D2_{2} are observed and absolute collision cross sections measured. The He--OH and D2_{2}--OH center-of-mass collision energies are tuned from 60 cm−1^{-1} to 230 cm−1^{-1} and 145 cm−1^{-1} to 510 cm−1^{-1}, respectively, yielding evidence of reduced He--OH inelastic cross sections at energies below 84 cm−1^{-1}, the OH ground rotational level spacing.Comment: 4 pages, 4 figure

    Investigation on the structural behaviour of timber concrete composite connections

    Full text link
    A project exploring innovative structural systems that utilise timber and provide a competitive alternative to steel and concrete products commenced at the University of Technology, Sydney, in 2007. It aims to identify and develop at least three flooring/framing concepts suitable for initial application in a two-/three-storey commercial building in Australia. In this context, a timber concrete composite (TCC) represents a competitive solution. An important aspect of TCC structures corresponds to the shear connectors, which are essential for TCC structural behaviour. Thus, they need to provide sufficient strength and impair slip between TCC layers. A laboratory investigation on these connectors is discussed in this paper. The scope and research plan are presented and the connection strength and stiffness are analysed and commented. © 2009 Taylor & Francis Group, London
    • …
    corecore