200 research outputs found

    Multi-material additive manufacturing of low sintering temperature Bi2Mo2O9 ceramics with Ag floating electrodes by selective laser burnout

    Get PDF
    Additive manufacturing (AM) of co-fired low temperature ceramics offers a unique route for fabrication of novel 3D radio frequency (RF) and microwave communication components, embedded electronics and sensors. This paper describes the first-ever direct 3D printing of low temperature co-fired ceramics/floating electrode 3D structures. Slurry-based AM and selective laser burnout (SLB) were used to fabricate bulk dielectric, Bi2Mo2O9 (BMO, sintering temperature = 620–650°C, εr = 38) with silver (Ag) internal floating electrodes. A printable BMO slurry was developed and the SLB optimised to improve edge definition and burn out the binder without damaging the ceramic. The SLB increased the green strength needed for shape retention, produced crack-free parts and prevented Ag leaching into the ceramic during co-firing. The green parts were sintered after SLB in a conventional furnace at 645°C for 4 h and achieved 94.5% density, compressive strength of 4097 MPa, a relative permittivity (εr) of 33.8 and a loss tangent (tan δ) of 0.0004 (8 GHz) for BMO. The feasibility of using SLB followed by a post-printing sintering step to create BMO/Ag 3D structures was thus demonstrated

    GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP

    Full text link
    Full detector simulation was among the largest CPU consumer in all CERN experiment software stacks for the first two runs of the Large Hadron Collider (LHC). In the early 2010's, the projections were that simulation demands would scale linearly with luminosity increase, compensated only partially by an increase of computing resources. The extension of fast simulation approaches to more use cases, covering a larger fraction of the simulation budget, is only part of the solution due to intrinsic precision limitations. The remainder corresponds to speeding-up the simulation software by several factors, which is out of reach using simple optimizations on the current code base. In this context, the GeantV R&D project was launched, aiming to redesign the legacy particle transport codes in order to make them benefit from fine-grained parallelism features such as vectorization, but also from increased code and data locality. This paper presents extensively the results and achievements of this R&D, as well as the conclusions and lessons learnt from the beta prototype.Comment: 34 pages, 26 figures, 24 table

    CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands

    Full text link
    The CEFLES2 campaign during the Carbo Europe Regional Experiment Strategy was designed to provide simultaneous airborne measurements of solar induced fluorescence and CO2 fluxes. It was combined with extensive ground-based quantification of leaf- and canopy-level processes in support of ESA's Candidate Earth Explorer Mission of the "Fluorescence Explorer" (FLEX). The aim of this campaign was to test if fluorescence signal detected from an airborne platform can be used to improve estimates of plant mediated exchange on the mesoscale. Canopy fluorescence was quantified from four airborne platforms using a combination of novel sensors: (i) the prototype airborne sensor AirFLEX quantified fluorescence in the oxygen A and B bands, (ii) a hyperspectral spectrometer (ASD) measured reflectance along transects during 12 day courses, (iii) spatially high resolution georeferenced hyperspectral data cubes containing the whole optical spectrum and the thermal region were gathered with an AHS sensor, and (iv) the first employment of the high performance imaging spectrometer HYPER delivered spatially explicit and multi-temporal transects across the whole region. During three measurement periods in April, June and September 2007 structural, functional and radiometric characteristics of more than 20 different vegetation types in the Les Landes region, Southwest France, were extensively characterized on the ground. The campaign concept focussed especially on quantifying plant mediated exchange processes (photosynthetic electron transport, CO2 uptake, evapotranspiration) and fluorescence emission. The comparison between passive sun-induced fluorescence and active laser-induced fluorescence was performed on a corn canopy in the daily cycle and under desiccation stress. Both techniques show good agreement in detecting stress induced fluorescence change at the 760 nm band. On the large scale, airborne and ground-level measurements of fluorescence were compared on several vegetation types supporting the scaling of this novel remote sensing signal. The multi-scale design of the four airborne radiometric measurements along with extensive ground activities fosters a nested approach to quantify photosynthetic efficiency and gross primary productivity (GPP) from passive fluorescence

    Individual Shrink Wrapping of Zucchini Fruit Improves Postharvest Chilling Tolerance Associated with a Reduction in Ethylene Production and Oxidative Stress Metabolites

    Get PDF
    We have studied the effect of individual shrink wrapping (ISW) on the postharvest performance of refrigerated fruit from two zucchini cultivars that differ in their sensitivity to cold storage: Sinatra (more sensitive) and Natura (more tolerant). The fruit was individually shrink wrapped before storing at 4°C for 0, 7 and 14 days. Quality parameters, ethylene and CO2 productions, ethylene gene expression, and oxidative stress metabolites were assessed in shrink wrapped and non-wrapped fruit after conditioning the fruit for 6 hours at 20°C. ISW decreased significantly the postharvest deterioration of chilled zucchini in both cultivars. Weight loss was reduced to less than 1%, pitting symptoms were completely absent in ISW fruit at 7 days, and were less than 25% those of control fruits at 14 days of cold storage, and firmness loss was significantly reduced in the cultivar Sinatra. These enhancements in quality of ISW fruit were associated with a significant reduction in cold-induced ethylene production, in the respiration rate, and in the level of oxidative stress metabolites such as hydrogen peroxide and malonyldialdehyde (MDA). A detailed expression analysis of ethylene biosynthesis, perception and signaling genes demonstrated a downregulation of CpACS1 and CpACO1 genes in response to ISW, two genes that are upregulated by cold storage. However, the expression patterns of six other ethylene biosynthesis genes (CpACS2 to CpACS7) and five ethylene signal transduction pathway genes (CpCTR1, CpETR1, CpERS1, CpEIN3.1 and CpEN3.2), suggest that they do not play a major role in response to cold storage and ISW packaging. In conclusion, ISW zucchini packaging resulted in improved tolerance to chilling concomitantly with a reduction in oxidative stress, respiration rate and ethylene production, as well as in the expression of ethylene biosynthesis genes, but not of those involved in ethylene perception and sensitivity.This work was supported by grants AGL2011-30568-C02/ALI from the Spanish Ministry of Science and Innovation, and AGR1423 from the Consejería de Economía, Innovación y Ciencia, Junta de Andalucía, Spain. Z.M. acknowledges FPU program scholarships from MEC, Spain. S.M. is funded by grant PTA2011-479-I from the Spanish Ministry of Science and Innovation
    • …
    corecore