23,850 research outputs found
Improved analytic longitudinal response analysis for axisymmetric launch vehicles. Volume I - Linear analytic model
Improved analytic longitudinal response analysis for axisymmetric launch vehicles - linear mode
Acute pulmonary pathology and sudden death in rats following the intravenous administration of the plasticizer, DI (2-ethylhexyl) phthalate, solubilized with Tween surfactants
Intravenous administration of 200-300 mg/kg of di(2-ethylhexyl)phthalate (DEHP) solubilized in aqueous solutions of several Tween surfactants caused respiratory distress in rats. There was a dose-dependent lethality with death generally occurring within 90 minutes after injection. The lungs from DEHP:Tween treated animals were enlarged, generally darkened, and in some cases showed hemorrhagic congestion. Neither the overt symptoms nor the morphologic alterations resulting from DEHP:Tween administration could be reproduced by intravenous administration of aqueous Tween solutions alone. The absence of pulmonary abnormalities following the intravenous administration of DEHP as an aqueous emulsion given either alone or even as soon as 2 minutes after pretreatment with Tween 80, suggests that the specific in vivo interaction between DEHP and Tween surfactants depends on the prior formation of water-soluble micelles of DEHP
Scout motor performance analysis and prediction study /PAPS/
Scout motor performance analysis and predictio
Spitzer reveals what's behind Orion's Bar
We present Spitzer Space Telescope observations of 11 regions SE of the
Bright Bar in the Orion Nebula, along a radial from the exciting star
theta1OriC, extending from 2.6 to 12.1'. Our Cycle 5 programme obtained deep
spectra with matching IRS short-high (SH) and long-high (LH) aperture grid
patterns. Most previous IR missions observed only the inner few arcmin. Orion
is the benchmark for studies of the ISM particularly for elemental abundances.
Spitzer observations provide a unique perspective on the Ne and S abundances by
virtue of observing the dominant ionization states of Ne (Ne+, Ne++) and S
(S++, S3+) in Orion and H II regions in general. The Ne/H abundance ratio is
especially well determined, with a value of (1.01+/-0.08)E-4. We obtained
corresponding new ground-based spectra at CTIO. These optical data are used to
estimate the electron temperature, electron density, optical extinction, and
the S+/S++ ratio at each of our Spitzer positions. That permits an adjustment
for the total gas-phase S abundance because no S+ line is observed by Spitzer.
The gas-phase S/H abundance ratio is (7.68+/-0.30)E-6. The Ne/S abundance ratio
may be determined even when the weaker hydrogen line, H(7-6) here, is not
measured. The mean value, adjusted for the optical S+/S++ ratio, is Ne/S =
13.0+/-0.6. We derive the electron density versus distance from theta1OriC for
[S III] and [S II]. Both distributions are for the most part decreasing with
increasing distance. A dramatic find is the presence of high-ionization Ne++
all the way to the outer optical boundary ~12' from theta1OriC. This IR result
is robust, whereas the optical evidence from observations of high-ionization
species (e.g. O++) at the outer optical boundary suffers uncertainty because of
scattering of emission from the much brighter inner Huygens Region.Comment: 60 pages, 16 figures, 10 tables. MNRAS accepte
The Nature and Frequency of Outflows from Stars in the Central Orion Nebula Cluster
Recent Hubble Space Telescope images have allowed the determination with
unprecedented accuracy of motions and changes of shocks within the inner Orion
Nebula. These originate from collimated outflows from very young stars, some
within the ionized portion of the nebula and others within the host molecular
cloud. We have doubled the number of Herbig-Haro objects known within the inner
Orion Nebula. We find that the best-known Herbig-Haro shocks originate from a
relatively few stars, with the optically visible X-ray source COUP 666 driving
many of them.
While some isolated shocks are driven by single collimated outflows, many
groups of shocks are the result of a single stellar source having jets oriented
in multiple directions at similar times. This explains the feature that shocks
aligned in opposite directions in the plane of the sky are usually blue shifted
because the redshifted outflows pass into the optically thick Photon Dominated
Region behind the nebula. There are two regions from which optical outflows
originate for which there are no candidate sources in the SIMBAD data base.Comment: 152 pages, 46 figures, 7 tables. Accepted by A
Low-ionization Line Emission from Starburst Galaxies: A New Probe of Galactic-Scale Outflows
We study the kinematically narrow, low-ionization line emission from a
bright, starburst galaxy at z = 0.69 using slit spectroscopy obtained with
Keck/LRIS. The spectrum reveals strong absorption in MgII and FeII resonance
transitions with Doppler shifts of -200 to -300 km/s, indicating a cool gas
outflow. Emission in MgII near and redward of systemic velocity, in concert
with the observed absorption, yields a P Cygni-like line profile similar to
those observed in the Ly alpha transition in Lyman Break Galaxies. Further, the
MgII emission is spatially resolved, and extends significantly beyond the
emission from stars and HII regions within the galaxy. Assuming the emission
has a simple, symmetric surface brightness profile, we find that the gas
extends to distances > ~7 kpc. We also detect several narrow FeII*
fine-structure lines in emission near the systemic velocity, arising from
energy levels which are radiatively excited directly from the ground state. We
suggest that the MgII and FeII* emission is generated by photon scattering in
the observed outflow, and emphasize that this emission is a generic prediction
of outflows. These observations provide the first direct constraints on the
minimum spatial extent and morphology of the wind from a distant galaxy.
Estimates of these parameters are crucial for understanding the impact of
outflows in driving galaxy evolution.Comment: Submitted to ApJL. 6 pages, 4 figures. Uses emulateapj forma
Evidence for Ubiquitous Collimated Galactic-Scale Outflows along the Star-Forming Sequence at z~0.5
We present an analysis of the MgII 2796, 2803 and FeII 2586, 2600 absorption
line profiles in individual spectra of 105 galaxies at 0.3<z<1.4. The galaxies,
drawn from redshift surveys of the GOODS fields and the Extended Groth Strip,
fully sample the range in star formation rates (SFRs) occupied by the
star-forming sequence with stellar masses log M_*/M_sun > 9.5 at 0.3<z<0.7.
Using the Doppler shifts of the MgII and FeII absorption lines as tracers of
cool gas kinematics, we detect large-scale winds in 66+/-5% of the galaxies.
HST/ACS imaging and our spectral analysis indicate that the outflow detection
rate depends primarily on galaxy orientation: winds are detected in ~89% of
galaxies having inclinations (i) <30 degrees (face-on), while the wind
detection rate is only ~45% in objects having i>50 degrees (edge-on). Combined
with the comparatively weak dependence of the wind detection rate on intrinsic
galaxy properties, this suggests that biconical outflows are ubiquitous in
normal, star-forming galaxies at z~0.5. We find that the wind velocity is
correlated with host galaxy M_* at 3.4-sigma significance, while the equivalent
width of the flow is correlated with host galaxy SFR at 3.5-sigma significance,
suggesting that hosts with higher SFR may launch more material into outflows
and/or generate a larger velocity spread for the absorbing clouds. Assuming
that the gas is launched into dark matter halos with simple, isothermal density
profiles, the wind velocities measured for the bulk of the cool material
(~200-400 km/s) are sufficient to enable escape from the halo potentials only
for the lowest-M_* systems in the sample. However, the outflows typically carry
sufficient energy to reach distances of >50 kpc, and may therefore be a viable
source of cool material for the massive circumgalactic medium observed around
bright galaxies at z~0. [abridged]Comment: Submitted to ApJ. 61 pages, 25 figures, 4 tables, 4 appendices. Uses
emulateapj forma
Clinical impact of double protease inhibitor boosting with Lopinavir/Ritonavir and Amprenavir as part of salvage antiretroviral therapy
Purpose: Double protease inhibitor (PI) boosting is being explored as a new strategy in salvage antiretroviral (ARV) therapy. However, if a negative drug interaction leads to decreased drug levels of either or both PIs, double PI boosting could lead to decreased virologic response. A negative drug interaction has been described between amprenavir (APV) and lopinavir/ritonavir (LPV/r). This observational cohort study assessed the virologic impact of the addition of APV to a salvage ARV regimen, which also contains LPV/r, compared to a regimen containing LPV/r alone. Method: Patients initiated on a salvage ARV regimen that included LPV/r obtained from the expanded access program in Toronto, Canada, were evaluated. APV (600-1,200 mg bid) was added at the discretion of the treating physician. Results: Using multivariate Cox proportional hazards models, we found that the addition of APV to a LPV/r-containing salvage regimen was not significantly associated with time to virologic suppression (< 50 copies/mL; adjusted hazard ratio [HR] = 0.75, p = .12) or with time to virologic rebound (adjusted HR = 1.46, p = .34). Those patients who received higher doses of APV had an increased chance of virologic suppression (p = .03). In a subset of 27 patients, the median LPV Ctrough was significantly lower in patients receiving APV (p = .04), and the median APV Ctrough was reduced compared to reported controls. Conclusion: Our data do not support an additional benefit in virologic reduction of double boosting with APV and LPV/r relative to LPV/r alone in salvage ARV therapy. Our study's limitations include its retrospective nature and the imbalance between the two groups potentially confounding the results. Although these factors were adjusted for in the multivariate analysis, a prospective randomized controlled trial is warranted to confirm our findings
Bar imprints on the inner gas kinematics of M33
We present measurements of the stellar and gaseous velocities in the central
5' of the Local Group spiral M33. The data were obtained with the ARC 3.5m
telescope. Blue and red spectra with resolutions from 2 to 4\AA covering the
principal gaseous emission and stellar absorption lines were obtained along the
major and minor axes and six other position angles. The observed radial
velocities of the ionized gas along the photometric major axis of M33 remain
flat at ~22 km s^{-1} all the way into the center, while the stellar velocities
show a gradual rise from zero to 22 km s^{-1} over that same region. The
central star cluster is at or very close to the dynamical center, with a
velocity that is in accordance with M33's systemic velocity to within our
uncertainties. Velocities on the minor axis are non-zero out to about 1' from
the center in both the stars and gas. Together with the major axis velocities,
they point at significant deviations from circular rotation. The most likely
explanation for the bulk of the velocity patterns are streaming motions along a
weak inner bar with a PA close to that of the minor axis, as suggested by
previously published IR photometric images. The presence of bar imprints in M33
implies that all major Local Group galaxies are barred. The non-circular
motions over the inner 200 pc make it difficult to constrain the shape of M33's
inner dark matter halo profile. If the non-circular motions we find in this
nearby Sc galaxy are present in other more distant late-type galaxies, they
might be difficult to recognize.Comment: 20 pages, 12 figures, ApJ in pres
- …