501 research outputs found
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Deep neural networks have emerged as a widely used and effective means for
tackling complex, real-world problems. However, a major obstacle in applying
them to safety-critical systems is the great difficulty in providing formal
guarantees about their behavior. We present a novel, scalable, and efficient
technique for verifying properties of deep neural networks (or providing
counter-examples). The technique is based on the simplex method, extended to
handle the non-convex Rectified Linear Unit (ReLU) activation function, which
is a crucial ingredient in many modern neural networks. The verification
procedure tackles neural networks as a whole, without making any simplifying
assumptions. We evaluated our technique on a prototype deep neural network
implementation of the next-generation airborne collision avoidance system for
unmanned aircraft (ACAS Xu). Results show that our technique can successfully
prove properties of networks that are an order of magnitude larger than the
largest networks verified using existing methods.Comment: This is the extended version of a paper with the same title that
appeared at CAV 201
Integrated Structure and Semantics for Reo Connectors and Petri Nets
In this paper, we present an integrated structural and behavioral model of
Reo connectors and Petri nets, allowing a direct comparison of the two
concurrency models. For this purpose, we introduce a notion of connectors which
consist of a number of interconnected, user-defined primitives with fixed
behavior. While the structure of connectors resembles hypergraphs, their
semantics is given in terms of so-called port automata. We define both models
in a categorical setting where composition operations can be elegantly defined
and integrated. Specifically, we formalize structural gluings of connectors as
pushouts, and joins of port automata as pullbacks. We then define a semantical
functor from the connector to the port automata category which preserves this
composition. We further show how to encode Reo connectors and Petri nets into
this model and indicate applications to dynamic reconfigurations modeled using
double pushout graph transformation
Unbiased Global Optimization of Lennard-Jones Clusters for N <= 201 by Conformational Space Annealing Method
We apply the conformational space annealing (CSA) method to the Lennard-Jones
clusters and find all known lowest energy configurations up to 201 atoms,
without using extra information of the problem such as the structures of the
known global energy minima. In addition, the robustness of the algorithm with
respect to the randomness of initial conditions of the problem is demonstrated
by ten successful independent runs up to 183 atoms. Our results indicate that
the CSA method is a general and yet efficient global optimization algorithm
applicable to many systems.Comment: revtex, 4 pages, 2 figures. Physical Review Letters, in pres
Minimizing the stabbing number of matchings, trees, and triangulations
The (axis-parallel) stabbing number of a given set of line segments is the
maximum number of segments that can be intersected by any one (axis-parallel)
line. This paper deals with finding perfect matchings, spanning trees, or
triangulations of minimum stabbing number for a given set of points. The
complexity of these problems has been a long-standing open question; in fact,
it is one of the original 30 outstanding open problems in computational
geometry on the list by Demaine, Mitchell, and O'Rourke. The answer we provide
is negative for a number of minimum stabbing problems by showing them NP-hard
by means of a general proof technique. It implies non-trivial lower bounds on
the approximability. On the positive side we propose a cut-based integer
programming formulation for minimizing the stabbing number of matchings and
spanning trees. We obtain lower bounds (in polynomial time) from the
corresponding linear programming relaxations, and show that an optimal
fractional solution always contains an edge of at least constant weight. This
result constitutes a crucial step towards a constant-factor approximation via
an iterated rounding scheme. In computational experiments we demonstrate that
our approach allows for actually solving problems with up to several hundred
points optimally or near-optimally.Comment: 25 pages, 12 figures, Latex. To appear in "Discrete and Computational
Geometry". Previous version (extended abstract) appears in SODA 2004, pp.
430-43
The impact of early surgical intervention in free intestinal perforation: a time-to-intervention pilot study
PURPOSES: An abdominal inflammatory focus is the second most often source of sepsis with a high risk of death in surgical intensive care units. By establishing evidence-based bundled strategies the surviving sepsis campaign provided an optimized rapid and continuous treatment of these emergency patients. Hereby the hospital mortality decreased from 35 to 30%. Sepsis treatment is based on three major therapeutic elements: surgical treatment (source control), antiinfective treatment, and supportive care. The international guidelines of the surviving sepsis campaign were updated recently and recommend rapid diagnosis of the infection and source control within the first 12h after the diagnosis (grade 1c). Interestingly this recommendation is mainly based on studies on soft tissue infections.
METHODS: In this retrospective analysis 76 septic patients with an intraabdominal inflammatory focus were included. All patients underwent surgery at different time-points after diagnosis.
RESULTS: With 80% patients of the early intervention group had an improved overall survival (vs. 73% in the late intervention group).
CONCLUSIONS: Literature on the time dependency of early source control is rare and in part contradicting. Results of this pilot study reveal that immediate surgical intervention might be of advantage for septic emergency patients. Further multi-center approaches will be necessary to evaluate, whether the TTI has any impact on the outcome of septic patients with intestinal perforation
Specific fibroblast subpopulations and neuronal structures provide local sources of Vegfc-processing components during zebrafish lymphangiogenesis
Proteolytical processing of the growth factor VEGFC through the concerted activity of CCBE1 and ADAMTS3 is required for lymphatic development to occur. How these factors act together in time and space, and which cell types produce these factors is not understood. Here we assess the function of Adamts3 and the related protease Adamts14 during zebrafish lymphangiogenesis and show both proteins to be able to process Vegfc. Only the simultaneous loss of both protein functions results in lymphatic defects identical to vegfc loss-of-function situations. Cell transplantation experiments demonstrate neuronal structures and/or fibroblasts to constitute cellular sources not only for both proteases but also for Ccbe1 and Vegfc. We further show that this locally restricted Vegfc maturation is needed to trigger normal lymphatic sprouting and directional migration. Our data provide a single-cell resolution model for establishing secretion and processing hubs for Vegfc during developmental lymphangiogenesis
Editor's Choice \u2013 Management of Atherosclerotic Carotid and Vertebral Artery Disease: 2017 Clinical Practice Guidelines of the European Society for Vascular Surgery (ESVS)
2017 Clinical Practice Guidelines of the European Society for Vascular Surgery
- …