4,229 research outputs found
Role of defects and impurities in doping of GaN
We have calculated formation energies and position of the defect levels for
all native defects and for a variety of donor and acceptor impurities employing
first-principles total-energy calculations. An analysis of the numerical
results gives direct insight into defect concentrations and impurity solubility
with respect to growth parameters (temperature, chemical potentials) and into
the mechanisms limiting the doping levels in GaN. We show how compensation and
passivation by native defects or impurities, solubility issues, and
incorporation of dopants on other sites influence the acceptor doping levels.Comment: 8 pages, 3 figures, to appear in "The Physics of Semiconductors
The Post-Newtonian Approximation of the Rigidly Rotating Disc of Dust to Arbitrary Order
Using the analytic, global solution for the rigidly rotating disc of dust as
a starting point, an iteration scheme is presented for the calculation of an
arbitrary coefficient in the post-Newtonian (PN) approximation of this
solution. The coefficients were explicitly calculated up to the 12th PN level
and are listed in this paper up to the 4th PN level. The convergence of the
series is discussed and the approximation is found to be reliable even in
highly relativistic cases. Finally, the ergospheres are calculated at
increasing orders of the approximation and for increasingly relativistic
situations.Comment: 19 pages, 2 tables, 4 figures Accepted for publication in Phys. Rev.
General relativistic gravitational field of a rigidly rotating disk of dust: Solution in terms of ultraelliptic functions
In a recent paper we presented analytic expressions for the axis potential,
the disk metric, and the surface mass density of the global solution to
Einstein's field equations describing a rigidly rotating disk of dust. Here we
add the complete solution in terms of ultraelliptic functions and quadratures.Comment: 5 pages, published in 1995 [Phys. Rev. Lett. 75 (1995) 3046
Differentially rotating disks of dust: Arbitrary rotation law
In this paper, solutions to the Ernst equation are investigated that depend
on two real analytic functions defined on the interval [0,1]. These solutions
are introduced by a suitable limiting process of Backlund transformations
applied to seed solutions of the Weyl class. It turns out that this class of
solutions contains the general relativistic gravitational field of an arbitrary
differentially rotating disk of dust, for which a continuous transition to some
Newtonian disk exists. It will be shown how for given boundary conditions (i.
e. proper surface mass density or angular velocity of the disk) the
gravitational field can be approximated in terms of the above solutions.
Furthermore, particular examples will be discussed, including disks with a
realistic profile for the angular velocity and more exotic disks possessing two
spatially separated ergoregions.Comment: 23 pages, 3 figures, submitted to 'General Relativity and
Gravitation
Clean and As-covered zinc-blende GaN (001) surfaces: Novel surface structures and surfactant behavior
We have investigated clean and As-covered zinc-blende GaN (001) surfaces,
employing first-principles total-energy calculations. For clean GaN surfaces
our results reveal a novel surface structure very different from the
well-established dimer structures commonly observed on polar III-V (001)
surfaces: The energetically most stable surface is achieved by a Peierls
distortion of the truncated (1x1) surface rather than through addition or
removal of atoms. This surface exhibits a (1x4) reconstruction consisting of
linear Ga tetramers. Furthermore, we find that a submonolayer of arsenic
significantly lowers the surface energy indicating that As may be a good
surfactant. Analyzing surface energies and band structures we identify the
mechanisms which govern these unusual structures and discuss how they might
affect growth properties.Comment: 4 pages, 3 figures, to be published in Appears in Phys. Rev. Lett.
(in print). Other related publications can be found at
http://www.rz-berlin.mpg.de/th/paper.htm
The influence of short range forces on melting along grain boundaries
We investigate a model which couples diffusional melting and nanoscale
structural forces via a combined nano-mesoscale description. Specifically, we
obtain analytic and numerical solutions for melting processes at grain
boundaries influenced by structural disjoining forces in the experimentally
relevant regime of small deviations from the melting temperature. Though
spatially limited to the close vicinity of the tip of the propagating melt
finger, the influence of the disjoining forces is remarkable and leads to a
strong modification of the penetration velocity. The problem is represented in
terms of a sharp interface model to capture the wide range of relevant length
scales, predicting the growth velocity and the length scale describing the
pattern, depending on temperature, grain boundary energy, strength and length
scale of the exponential decay of the disjoining potential. Close to
equilibrium the short-range effects near the triple junctions can be expressed
through a contact angle renormalisation in a mesoscale formulation. For higher
driving forces strong deviations are found, leading to a significantly higher
melting velocity than predicted from a purely mesoscopic description.Comment: 10 page
Non-existence of stationary two-black-hole configurations
We resume former discussions of the question, whether the spin-spin repulsion
and the gravitational attraction of two aligned black holes can balance each
other. To answer the question we formulate a boundary value problem for two
separate (Killing-) horizons and apply the inverse (scattering) method to solve
it. Making use of results of Manko, Ruiz and Sanabria-G\'omez and a novel black
hole criterion, we prove the non-existence of the equilibrium situation in
question.Comment: 15 pages, 3 figures; Contribution to Juergen Ehlers Memorial Issue
(GeRG journal
Exact relativistic treatment of stationary counter-rotating dust disks III. Physical Properties
This is the third in a series of papers on the construction of explicit
solutions to the stationary axisymmetric Einstein equations which can be
interpreted as counter-rotating disks of dust. We discuss the physical
properties of a class of solutions to the Einstein equations for disks with
constant angular velocity and constant relative density which was constructed
in the first part. The metric for these spacetimes is given in terms of theta
functions on a Riemann surface of genus 2. It is parameterized by two physical
parameters, the central redshift and the relative density of the two
counter-rotating streams in the disk. We discuss the dependence of the metric
on these parameters using a combination of analytical and numerical methods.
Interesting limiting cases are the Maclaurin disk in the Newtonian limit, the
static limit which gives a solution of the Morgan and Morgan class and the
limit of a disk without counter-rotation. We study the mass and the angular
momentum of the spacetime. At the disk we discuss the energy-momentum tensor,
i.e. the angular velocities of the dust streams and the energy density of the
disk. The solutions have ergospheres in strongly relativistic situations. The
ultrarelativistic limit of the solution in which the central redshift diverges
is discussed in detail: In the case of two counter-rotating dust components in
the disk, the solutions describe a disk with diverging central density but
finite mass. In the case of a disk made up of one component, the exterior of
the disks can be interpreted as the extreme Kerr solution.Comment: 30 pages, 20 figures; to appear in Phys. Rev.
- …