21,549 research outputs found

    A new formulation of compartmental epidemic modelling for arbitrary distributions of incubation and removal times

    Full text link
    The paradigm for compartment models in epidemiology assumes exponentially distributed incubation and removal times, which is not realistic in actual populations. Commonly used variations with multiple exponentially distributed variables are more flexible, yet do not allow for arbitrary distributions. We present a new formulation, focussing on the SEIR concept that allows to include general distributions of incubation and removal times. We compare the solution to two types of agent-based model simulations, a spatially homogeneous one where infection occurs by proximity, and a model on a scale-free network with varying clustering properties, where the infection between any two agents occurs via their link if it exists. We find good agreement in both cases. Furthermore a family of asymptotic solutions of the equations is found in terms of a logistic curve, which after a non-universal time shift, fits extremely well all the microdynamical simulations. The formulation allows for a simple numerical approach; software in Julia and Python is provided.Comment: 21 pages, 11 figures. v2 matches published version: improved presentation (including title, abstract and references), results and conclusions unchange

    Quantum Phase Transitions detected by a local probe using Time Correlations and Violations of Leggett-Garg Inequalities

    Full text link
    In the present paper we introduce a way of identifying quantum phase transitions of many-body systems by means of local time correlations and Leggett-Garg inequalities. This procedure allows to experimentally determine the quantum critical points not only of finite-order transitions but also those of infinite order, as the Kosterlitz-Thouless transition that is not always easy to detect with current methods. By means of simple analytical arguments for a general spin-1/21 / 2 Hamiltonian, and matrix product simulations of one-dimensional XXZX X Z and anisotropic XYX Y models, we argue that finite-order quantum phase transitions can be determined by singularities of the time correlations or their derivatives at criticality. The same features are exhibited by corresponding Leggett-Garg functions, which noticeably indicate violation of the Leggett-Garg inequalities for early times and all the Hamiltonian parameters considered. In addition, we find that the infinite-order transition of the XXZX X Z model at the isotropic point can be revealed by the maximal violation of the Leggett-Garg inequalities. We thus show that quantum phase transitions can be identified by purely local measurements, and that many-body systems constitute important candidates to observe experimentally the violation of Leggett-Garg inequalities.Comment: Minor changes, 11 pages, 11 figures. Final version published in Phys. Rev.

    A cluster model with random anisotropy for hysteresis jumps in CeNi1x_{1-x}Cux_{x} alloys

    Get PDF
    Some Cerium compounds exhibit hysteresis cycles with sharp macroscopic jumps in the magnetization at very low temperatures. This effect is attributed to the formation of clusters in which the anisotropy competes with the applied magnetic field. Here, we present a simple model where a lattice of ferromagnetically coupled spins is separated in clusters of random sizes and with random anisotropy. Within this model, we obtain hysteresis cycles presenting jumps that behave in a similar way that the experimental ones, and that disappear when increasing the temperature. The results are in good agreement with the hysteresis cycles measured at very low temperatures in CeNi1x_{1-x}Cux_{x} and the comparison with these experimental results allows to discriminate the relative importance of the mechanisms driving the thermal evolution of the cycles.Comment: Accepted in PR

    The electro production of d* dibaryon

    Full text link
    dd^* dibaryon study is a critical test of hadron interaction models. The electro production cross sections of ededed\to ed^* have been calculated based on the meson exchange current model and the cross section around 30 degree of 1 GeV electron in the laboratory frame is about 10 nb. The implication of this result for the dd^* dibaryon search has been discussed.Comment: 12 pages, 12 figures, Late

    Diffusion dynamics on multiplex networks

    Get PDF
    We study the time scales associated to diffusion processes that take place on multiplex networks, i.e. on a set of networks linked through interconnected layers. To this end, we propose the construction of a supra-Laplacian matrix, which consists of a dimensional lifting of the Laplacian matrix of each layer of the multiplex network. We use perturbative analysis to reveal analytically the structure of eigenvectors and eigenvalues of the complete network in terms of the spectral properties of the individual layers. The spectrum of the supra-Laplacian allows us to understand the physics of diffusion-like processes on top of multiplex networks.Comment: 6 Pages including supplemental material. To appear in Physical Review Letter

    Generation of maximally entangled states of qudits using twin photons

    Full text link
    We report an experiment to generate maximally entangled states of D-dimensional quantum systems, qudits, by using transverse spatial correlations of two parametric down-converted photons. Apertures with D-slits in the arms of the twin fotons define the qudit space. By manipulating the pump beam correctly the twin photons will pass only by symmetrically opposite slits, generating entangled states between these differents paths. Experimental results for qudits with D=4 and D=8 are shown. We demonstrate that the generated states are entangled states.Comment: 04 pages, 04 figure
    corecore