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Following the holographic description of linear dilaton null cosmologies with a big bang in terms of
matrix string theory put forward by Craps, Sethi, and Verlinde, we propose an extended background
describing a universe including both big bang and big crunch singularities. This belongs to a class of exact
string backgrounds and is perturbative in the string coupling far away from the singularities, both of which
can be resolved using matrix string theory. We provide a simple theory capable of describing the complete
evolution of this closed universe.
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I. INTRODUCTION

It is widely believed that string/M-theory should be
singularity free in its moduli space. So far, the theory has
succeeded in resolving a number of static singular regions,
but null and spacelike singularities still pose a fundamental
challenge. The standard cosmological paradigm assumes
the existence of a big bang, out of which the Universe
originated. Indeed, its relic signature is the cosmic micro-
wave background radiation at a temperature of close to
2.7 K which we can measure today. Hence, both from the
purely theoretical and the experimental points of view, the
question of what happened at the big bang is of extreme
interest and any progress in the understanding of nonstatic
singularities is highly desirable.

An interesting step in this direction arising from string/
M-theory is a model proposed in [1]. By choosing a
particularly simple background, namely, a lightlike linear
dilaton (LLD), Craps et al. were able to obtain a matrix
string theory description [2–5] of the early-time physics,
which seems to be valid even at the big bang-type singu-
larity. One of the main attributes of the LLD background is
that the string world sheet theory is still free, since the
dilaton does not contribute to the central charge of the
conformal field theory (CFT). Therefore one would naively
expect that it should be possible to make use of matrix
string theory, by simply exchanging gs for gs�x��. Indeed,
the authors of [1] showed how this guess turns out to be
correct and obtained a resolution of the singularity by
explicitly deriving the matrix model via the discrete
light-cone quantization (DLCQ) of string theory in the
presence of an LLD and a sequence of dualities.
Subsequently, the one-loop matrix potential was calculated

in [6] and was found to be attractive while vanishing at late
times.1 These developments have generated great activity
on closely related topics, e.g. [8–17]. Alternative holo-
graphic approaches to the study of nonstatic cosmological
singularities involving the AdS/CFT correspondence have
also been recently considered in the literature [18–23]. For
a comprehensive list of references on both types of con-
structions as well as on the more general problem of
resolving null and spacelike singularities in string/M-
theory, we refer the reader to [21] and the reviews [24,25].

In this note, starting with the LLD background, we will
construct an extension to [1] containing a big bang and a
big crunch while still having a perturbative matrix model
description near the singularities. This is motivated by the
analysis of the LLD cosmology: It is well known that the
linear dilaton background can be obtained as a Penrose
limit along a purely radially incoming/outgoing geodesic2

of an NS5 background (see for example [26]). This sug-
gests a possible modification of the LLD background by
taking the Penrose limit along an outgoing geodesic and
gluing it with the Penrose limit along an incoming geodesic
at the point x� � 0. The resulting background is simply
flat space with a lightlike linear dilaton whose sign is
reversed in going from x� < 0 to x� > 0. Since in the
Einstein frame the dilaton acts as a scale factor, this sign
reversal implies the transition from a big bang to a big
crunch. The mathematical consistency of this gluing pro-
cedure [27,28] requires the existence of a nontrivial Neveu-
Schwarz (NS) B-field supported only at the gluing junc-
tion. As we will show, this background can also be obtained
as a solution to the IIA supergravity equations of motion.
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1An everywhere vanishing answer was obtained in [7]
although it is believed that this is due to calculating a time
averaged version of the potential.

2As we will see, a particular sign for the dilaton corresponds to
a choice between incoming or outgoing geodesics.
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For both the big bang and big crunch singularities, this
solution reduces to two copies of the LLD. The new
ingredient of this construction is the cosmological turning
point, x� � 0, at which the theory initially appears to be
singular. We study the supergravity description and find a
background in terms of a regulating parameter, which once
taken to zero leads back to the original solution. We will
argue that the generic features of [1] are still valid and that,
in both the far past and far future, one can construct a
mildly modified version of the matrix string theory describ-
ing both null cosmological singularities. Once again the
interpretation of the turning point is less transparent, but
the physics appear to be captured by perturbative strings.
Hence, it is still possible to write down a matrix string
theory valid even at the turning point.

The rest of this note is organized as follows: In Sec. II we
briefly review the lightlike linear dilaton background and
the matrix big bang scenario of [1]. In Sec. III we analyze
the situation when viewed as a Penrose limit of a nonex-
tremal NS5 solution. We then go on to describe the big
bang-big crunch scenario as a gluing procedure in Sec. IV.
Section V is devoted to obtaining the same solution from
10D supergravity and providing a regularized version be-
fore we discuss the matrix string theory description in
Sec. VI. We summarize and conclude in Sec. VII.

II. REVIEW OF THE LIGHTLIKE LINEAR
DILATON BACKGROUND

The LLD background is a remarkably simple time-
dependent solution of type IIA string theory involving
flat Minkowski space in coordinates x� � �x�; x�; ~x�,
with ~x representing the eight remaining spacelike direc-
tions, and string frame metric

 ds2
10 � �2dx�dx� � d~x2: (2.1)

There is also a dilaton given by � � �Qx�, where Q is a
constant. Flat space is still a string solution despite the
presence of the lightlike linear dilaton, since the latter, as
opposed to a spacelike or timelike one, makes no contri-
bution to the conformal anomaly [29].

By expressing the solution in the Einstein frame, the
metric is rescaled by a factor of e��=2 giving

 ds2
E � eQx

�=2ds2
10: (2.2)

Cosmological evolution takes place in this frame. If one
interprets x� as the time variable, space-time originates at
a big bang as x� ! �1 provided that Q> 0.

It is not just that the metric vanishes as x� ! �1; it is
clear that the string coupling gs � e� blows up in this limit
and therefore we should really be thinking about M-theory
rather than IIA strings. Looking at the M-theory up-lift

 ds2
11 � e2Qx�=3ds2

10 � e
�4Qx�=3�dx10�2; (2.3)

with x10 the 11th direction, it is not hard to verify that there

are divergent components of the Riemann tensor and that
the space-time is geodesically incomplete [1]. The behav-
ior of the solution (2.2) is thus that of a cosmology with an
initial big bang singularity in light-cone time.

In [1], Craps et al. then go on to resolve this singularity
by going to a dual matrix model description in terms of a
2D super Yang-Mills theory. This can be understood either
as the gauge theory defined on the cylinder with a time-
dependent coupling, or as it having a constant coupling but
being defined on a time-dependent world sheet given by
the forward quadrant of the Milne orbifold of 2D
Minkowski space. In this description the matrix model is
weakly coupled when the string theory is strongly coupled
(i.e. near the big bang singularity), which renders it trac-
table. We will return to this in Sec. VI.

The constantQ, in principle arbitrary, should be taken to
be positive if we are to interpret this solution as a big bang
cosmology. By means of a boost x� ! x�

Q and x� ! Qx�,
we can always set the background to

 ds2
10 � �2dx�dx� � d~x2; � � �x� (2.4)

in string frame or

 ds2
E � ex

�=2��2dx�dx� � d~x2�; � � �x� (2.5)

in Einstein frame, where we have a big bang singularity in
the far past of light-cone time x�. The string coupling,
gs � e�x

�
also diverges at the singularity.

III. PENROSE LIMIT OF NONEXTREMAL NS5S
AND LLD

It has been shown [26] that the linear dilaton background
can be understood as a Penrose limit along a radial null
geodesic of the solution for N coincident NS5-branes.
Roughly speaking, the Penrose limit amounts to boosting
to the speed of light while at the same time blowing up the
neighborhood of a given geodesic to the whole space.
Given that an observer falling freely into a black hole
cannot distinguish between the existence (or nonexistence)
of horizons, it is to be expected that in both the extremal
and nonextremal NS5 cases the Penrose limit will yield the
same space. Indeed one can check explicitly that this is the
case, so for the sake of generality let us consider the near
horizon limit of the nonextremal NS5-brane solution [30].
This is given by

 ds2 � �

�
1�

r2
0

r2

�
dt2 � d~y2 �

Nl2s
r2

�
dr2

�1�
r2

0

r2�

� r2�cos2�d 2 � d�2 � sin2�d’2�

�
; (3.1)

where ~y corresponds to the five world volume coordinates
of the NS5-branes, which are located at r � 0. The ge-
ometry in ft; rg is that of a 2D black hole whose horizon sits
at r � r0. There is also a nonzero dilaton given by
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 e2� �
~g2
sNl2s
r2 ; (3.2)

where ~gs is the asymptotically weak string coupling con-
stant, and an NS 3-form field strength given by

 H�3� � Nl2s sin� cos�d ^ d� ^ d’: (3.3)

We will be interested in Penrose limits of this geometry
along a purely radial null geodesic. We closely follow the
conventions of [26] and therefore parametrize the geodesic
as

 

�
dr
du

�
2
�

r2

Nl2s
; dt �

du

�1�
r2

0

r2�
� dv: (3.4)

The first expression has the globally defined solution

 r � �r exp
�
�u��������
Nl2s

p �
; (3.5)

where the choice of sign corresponds to the choice between
an incoming or an outgoing geodesic. This follows from
the fact that if we compute the light-cone time velocity dr

du ,
this is either positive, and thus an outgoing geodesic, or
negative and thus an incoming geodesic. The parameter �r is
an integration constant which sets the overall scale of the
space.

We now introduce the following change of variables:

 u � x�
��������
Nl2s

q
; v �

x���������
Nl2s

p ;

� �
z��������
Nl2s

p ;  �
w��������
Nl2s

p ;
(3.6)

and after taking N ! 1 one can easily see that the metric
reduces to flat space in light-cone coordinates while the 3-
form field vanishes in this limit. Finally, the dilaton be-
comes

 e� �
~gs

��������
Nl2s

p
�r

e�x
�
; (3.7)

where we have implicitly assumed that the factor ~gs
������
Nl2s
p

�r is
positive and we will also require it to be finite and small.
This is a reasonable assumption to make,3 implemented by
fine-tuning the asymptotic string coupling ~gs to be weak
and setting the integration parameter �r to scale with N.

From (3.5) we see that there are two possible solutions
for the radial geodesic corresponding to a particular choice
of sign. Let us choose the positive solution for definiteness
which gives r � �rex

�
. After taking the Penrose limit [and

absorbing the constant factor in Eq. (3.7)], we obtain

 ds2 � �2dx�dx� � d~x2; � � �x�; (3.8)

which is precisely the linear dilaton background that we

found in (2.4) and (2.5) and was analyzed in [1].4 From this
point of view, the big bang singularity at x� � �1 should
be associated with r � 0, where the geodesic along which
we took the Penrose limit is hitting the NS5-branes. Had
we chosen the opposite sign, the geodesic would have hit
the branes at x� � 1, which from this point of view
should correspond to a big crunch singularity. Indeed,
this picture can be verified by repeating the geodesic
completeness analysis of Sec. II for a positive dilaton.

IV. THE BIG BRUNCH: GLUING THE BIG BANG
TO THE BIG CRUNCH

Given that we have a way to construct a big bang and a
big crunch, it is natural to ask whether one can combine the
two to obtain a closed cosmology. The obvious way of
doing that would be to pick a section of each and glue them
together to form a unique background involving both big
bang and big crunch. Thus, let us choose as a ‘‘geodesic’’
for the Penrose limit

 r � �re�x
�

if x� > 0; r � �rex
�

if x� < 0; (4.1)

which gives a dilaton

 � � x� if x� > 0; � � �x� if x� < 0: (4.2)

With this prescription we are gluing both geodesics at r �
�r. The background obtained in this way corresponds to
following geodesics going out of the NS5-branes at x� �
�1, reaching a maximum point �r at x� � 0, and then
coming back at x� � 1. Thus, it should correspond to
evolution from a big bang to a big crunch. One could ask if
the reverse situation is also possible, namely, an evolution
from a big crunch to a big bang. As it will become clear
later on, this possibility is not allowed in terms of this
particular description because of the well-known positive
energy theorems.

We have already seen that in the first patch the back-
ground is described by (3.8), while in the second it is again
(3.8) but with the sign for the dilaton reversed. Because of
their construction as a Penrose limit, we know that both
geometries are solutions to the supergravity equations of
motion. However, nothing guarantees that the same will
also hold for the gluing point. To find out whether our
background indeed satisfies the supergravity equations of
motion, we first have to properly take care of the junction
conditions. This setup could be thought of as a simple
‘‘cut-and-paste’’ problem, which is well known in gravity:
In order to resolve it we must ensure that both the metric
and the extrinsic curvature are continuous functions when
crossing the junction surface. If this is not the case some
extra matter must be supplied at the junction so that its
stress-energy tensor compensates for the discontinuity in
the extrinsic curvature.

3We will come back to this issue in Sec. VII.

4This alternative description and its relation to little string
theory was also briefly touched on in that reference.
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This procedure typically starts by choosing a vector
normal to the gluing surface and using it to compute the
extrinsic curvature. In this case, however, we are gluing
two copies of R8 at x� � 0. This is a lightlike surface, for
which the normal vector declines into tangency and the
usual definition of the extrinsic curvature is no longer
valid. In turn, a slight variation of the algorithm was
developed in [27] to accommodate for this fact. We will
follow the latter prescription, i.e. look for the ‘‘transverse‘‘
(in a sense which will be described below) extrinsic curva-
ture to the surface of gluing and, if the former is nonzero,
add some extra fields whose stress-energy tensor will
account for the discontinuity. For this we need to revert
to the Einstein frame.

We wish to glue the following two patches,

 ds2
1 � ex

�=2��2dx�dx� � d~x2� for x� < 0

ds2
2 � e�x

�=2��2dx�dx� � d~x2� for x� > 0
(4.3)

at x� � 0. In order to proceed further we will make use of
the stress-energy tensor � as defined in [28] for a null shell,
namely

 8���� � ��k��	 �
1
2�l�l�; (4.4)

where

 �k��	 � �
l�

2
�@�g�� � @�g��� (4.5)

is the ‘‘extrinsic‘‘ curvature, as explicitly defined for the
null case, and

 �l�l� � �g
�	��		l�l�: (4.6)

The square braces stand for the following prescription:

 �F	 � lim
x�!0
�Fx�<0 � Fx�>0�; (4.7)

i.e. �F	 is the difference between the initial and final F
when crossing the junction. Note that this expression
knows about the ordering of the backgrounds in the sense
that we are evolving from x� < 0 to x� > 0. The vector l�
defines the direction tangent to the null surface along
which we are gluing. For the complete details on the
construction we refer the interested reader to [28].

By describing the gluing surface as the condition
f�x�� � 0, we obtain l� as

 l� � @�f: (4.8)

Given that f is just a function of x�, it is clear that the only
nonzero entry for l� will be the one along x�. Indeed, it is
easy to see that the only nonzero entry for the stress-energy
tensor at the junction is ���. This turns out to be constant
and has support on the gluing surface, i.e.

 8���� � �4
�x��: (4.9)

In order to have a supergravity solution valid at the junc-

tion, we need to add some extra matter which will com-
pensate for this difference. Motivated by the fact that our
background comes from a certain limit of an NS5 geome-
try, where the only extra field is the NS B-field, we will
absorb (4.9) through the introduction of such a field. Its
stress-energy tensor, in a suitable normalization for com-
parison with (4.9), reads

 T�� � �
1

32�
H���H�

��: (4.10)

At this point we will impose an extra condition, assuming
for the moment5 that H���H

��� � 0. This then leads to

 H���H�
�� � 16
�x��: (4.11)

The background that we end up with in string frame then
reads

 ds2 � �2dx�dx� � d~x2; � � jx�j;

H���H�
�� � 16
�x��:

(4.12)

It is straightforward to see that, had we wanted to use the
other ordering when gluing the geodesics, namely, the one
which leads to a big crunch followed by a big bang, we
would have obtained the opposite sign in (4.9). Therefore it
would have been impossible to account for that through the
stress-energy tensor of any field, for which the sign is fixed,
or positive tension object. However, this could in principle
be circumvented by the introduction of a new effective
field theory at the singularity, where string theory is
strongly coupled and it is expected that one will have the
appearance of new light degrees of freedom [31,32], or by
introducing negative tension objects such as O-planes in
the spirit of [33].

V. EXPLORING THE SUPERGRAVITY PICTURE

We have so far obtained a background by gluing two
geodesics along a null hypersurface, in the process of
engineering a space-time incorporating both big bang and
big crunch singularities. The question now pertains to the
supergravity construction of such a solution. We begin with
pure IIA supergravity containing a nonzero B-field while
keeping a flat metric in string frame. We also have a
lightlike dilaton which is now a generic function of x�.
The equations of motion are given by

 

1
4 �

1
6g��H

2 �H���H�
��� � 2@�@��� g��@2�

� R�� �
1
2g��R; (5.1)

 4�@��2 � 4@2�� R�
1

12
H2 � 0; (5.2)

5We will provide good evidence in support of this assumption
in the following section.
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 @	H	
�� � 2@	�H	

�� � 0: (5.3)

Guided by the findings of the previous section, we will
assume the minimal form for the NS 3-form field strength,
i.e. the only nonzero components of H will be those with
H�ij � H�ij�x��, where i and j are indices labeling the 8
spatial coordinates. All the equations of motion are then
trivially satisfied with the exception of

 H�ijH�
ij � 8@2

��: (5.4)

This simplicity arises because of the index structure of H
and the functional dependence ofH and� only on x�. This
means that @2�, �@��2, and H2 � H���H��� are all iden-
tically zero, therefore justifying the assumption we made in
the previous section a posteriori. The equation of motion
for the B-field is satisfied for similar reasons. The only
nontrivial terms come from the Einstein equations which
reduce to (5.4) and show that the dilaton acceleration is
actually a source for the B-field. Indeed, by assuming a
simple linear dilaton solution we get H � 0, which brings
us back to the case in [1]. Conversely had we set the B-field
to zero, we would have obtained a linear dilaton solution.
Note that the acceleration of the dilaton is proportional to
the square of H�ij, and therefore explicitly non-negative.

Ultimately the background solutions consistent with the
equations of motion are

 ds2 � �2dx�dx� � d~x2; � � ��x��;

H�ij � H�ij�x
��;

(5.5)

where the dilaton and the B-field are related as in (5.4). The
3-form NS field-strength H is given in terms of the 2-form
potential as usual,H � dB. However, as we require spatial
isotropy and homogeneity we will demand that H�ij �
@�Bij�x

��.
So far, we have constructed a set of supergravity solu-

tions for a generic lightlike dilaton. Now, in very much the
spirit of the background constructed with the cut-and-paste
procedure, we will take6 the dilaton to be ��x�� � jx�j
since this has the requisite linear behavior in both domains.
In this case

 H�ijH�
ij � 16
�x��: (5.6)

The field H2
�ij is zero everywhere apart from x� � 0. This

is precisely the cut-and-paste solution as obtained from the
NS5-brane background (4.11), arising now in a more natu-
ral way within the supergravity context. To summarize, the
explicit solution for our space-time is

 ds2 � �2dx�dx� � d~x2; � � jx�j;

H2
�ij � 16
�x��:

(5.7)

We would like to point out that the above falls under a
class of backgrounds already considered in the literature
[34–37]. However, in this note we concentrate on a par-
ticular example, namely, the one representing the big bang-
big crunch cosmology.

A. Supersymmetry considerations

Since the time dependence of the problem has been
introduced in the form of light-cone time, we anticipate
that our background will preserve some fraction of super-
symmetry. Here we will explicitly show this by looking at
the vanishing of the supersymmetry variations relevant to
the bosonic sector. These yield

 
 � �
�
@� �

1

8
�11����H���

�
;


	 �
�
��@���

1

12
�11���i�jH�ij

�
:

(5.8)

The Clifford algebra relation f��;�ig � 0 allows the varia-
tion of the gaugino to be rewritten as

 

�
@���

1

12
�11�i�jH�ij

�

 �� � 0: (5.9)

This holds, provided that  is in the kernel of ��. If we now
examine the variation of the gravitino, since H has no
H��� component, the only nontrivial equations are those
for � � � and � � i. For the latter we find that the
equation is of the form

 �@i �
1
8�

11�jH�ij��� � 0; (5.10)

which is satisfied by decomposing  � f�x��0 with 0 a
constant spinor. We are thus left with the equation for � �
�. This reads

 �@�f�
1
8�

11�i�jH�ijf�0 � 0: (5.11)

The solution is then given by

 f � e�1=8��11�i�jBij : (5.12)

Using the fact that ��e�1=8��11�i�jBij � e��1=8��11�i�jBij��,
the condition �� � 0 gets translated into ��0 � 0 and
we can thus conclude that the solution preserves 16 super-
symmetries, i.e. the same amount as in the linear dilaton
case. We therefore have a family of 1

2 -BPS backgrounds
with metric, dilaton, and B-field as given by (5.5), with the
additional constraint (5.4).

B. Regularizing the solution

The supergravity background just constructed exhibits a
sharp localization at the turning point due to the delta
function support for the B-field. In case this is of concern
to the reader, we can smooth out this singular behavior by
constructing a regularized version in terms of a scalar
parameter . We will then be able to take ! 0 and

6Once again we have absorbed the asymptotic value of the
dilaton in this definition.
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recover the shell-like solution that we have thus far de-
scribed. Let us consider the case where we choose the B
field to lie along two spatial directions such that B12 is
nonzero. This enables us to forget about the tensorial
character of H for the time being (though it would be
easy to consider a more generic case) and allows us to
define a regularized field strength,

 H�12 � lim
!0

A
a

x�2 � 2 : (5.13)

Here A is a normalization factor and a a suitable exponent
to be fixed at a latter stage. The choice of this function is
motivated by the fact that H2 must be a 
-function, the
regularized version of which is a Lorentzian.

By using the equations of motion, we can obtain the
corresponding dilaton. Since in the ! 0 limit we should
have an absolute value, this allows us to fix both a and A. A
short calculation, flat-space metric aside, reveals that the 3-
form field strength and dilaton are given by

 � �
2

�

�
x� arctan

�
x�



�
�  log

�
;

H�12 �

������
32

�

s
3=2

x�2 � 2 :

(5.14)

It can be shown analytically that the dilaton goes to � �
jx�j in the limit ! 0. In the case of H the situation is
more involved, however it can be proved that for a well
behaved function f�x�� (i.e. finite as x� ! �1), as ! 0

 

1

16

Z 1
�1

dx�H2
�12�x

��f�x�� � f�0�: (5.15)

Therefore, the regularized solution exhibits the necessary

-function behavior and reduces to the original one in that
limit.

At this point we have constructed a regularized version
of the supergravity theory. In fact we can go one step
further and argue that this family of backgrounds is also
a string theory solution to all orders in �-model perturba-
tion theory. In [34] it was shown that a certain class of
backgrounds involving a metric, dilaton, and NSB-field do
not receive higher �0 corrections. These include fields of
the form

 ds2 � �dx�dx� � d~x2 � F�x�; ~x��dx��2

H��� � Aij�x
��l��r�x

ir�	x
j � � ��x��;

(5.16)

where l� is a null Killing vector encapsulating the fact that
the metric is independent of x�. The above are then solu-
tions to all orders in �0 if

 @2F�
1

18
AijA

ij � 2@2
�� � 0: (5.17)

Our solution has F � 0, � � jx�j, and H�ij � CAij,
where C is a constant, together with a suitable rescaling
of x� and x� to match the metrics. Up to some normaliza-

tion, the condition (5.17) is thus the same as our equations
of motion (5.6). Hence, the big bang-big crunch back-
ground that we have described belongs to the more general
family studied in [34] and is a solution of string theory to
all orders in �0. It is important to note that, because of the
special x� dependence of the fields, a similar statement
also applies to the regularized version of the solution. Since
we obtain the shell-like background through a path in
parameter space which lies entirely inside this family of
exact string solutions, we feel confident that it is indeed a
good background for string propagation.

VI. A THEORY DESCRIBING THE BIG BANG-BIG
CRUNCH

Having ensured that we have obtained a fully consistent
string background, we can start studying string propaga-
tion. Consider the (light-cone) time-dependent effective
string coupling

 gs�x�� � g0ejx
�j; (6.1)

where g0 �
~gs

������
Nl2s
p

�r . From this we see that for x� ! �1
the string coupling tends to infinity and so a perturbative
expansion in string loops does not make sense.

Let us forget about the point x� � 0 for the moment. We
are then left with strings in an LLD background, which
become strongly coupled at the big bang or the big crunch
in each respective patch. Thus, as proposed by Craps et al.,
we can conclude that away from x� � 0 the full dynamics
will be captured by a matrix string theory. The latter is
described by an action

 S �
1

2�l2s

Z
d2�Tr

�
1

2
�D�X

i�2 � �T��D��

� g2
sl

4
s�

2F2
�� �

1

4�2g2
sl

4
s
�Xi; Xj	2

�
1

2�gsl2s
�T�i�X

i; �	
�
; (6.2)

with the periodic identification �� �� 2�ls and where
the string coupling is given by (6.1). The Yang-Mills
coupling is identified with the inverse product of the string
length and the string coupling

 gYM �
1

gsls
; (6.3)

and it is obvious that this gauge theory becomes weakly
coupled when the string theory is strongly coupled and vice
versa.

Proceeding in more detail along the lines of [1], we will
once again assume a B-field whose only nonvanishing
element is B12. In the usual matrix string theory construc-
tion in flat space, one considers a lightlike compactification
x� � x� � 2�R, which is accompanied by a small shift in
x� due to the Sen-Seiberg argument [38,39]. However, this
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is no longer a symmetry in this context due to the explicit
dependence of the dilaton on that coordinate. We can get
around this problem by considering the Lorentz transfor-
mation

 x� � eX�; x� �
X�

2e
�
X�

e
�
X1

e
;

x9 � X� � X1;

(6.4)

in terms of which the original lightlike compactification
�x�; x�; x9� � �x�; x�; x9� � �0; R; eR� becomes just X1 �
X1 � eR, i.e. is only a usual spacelike compactification.
Hence, we can first T-dualize along the X1 direction and
then perform an S-duality to end up with a system of
coincident D1-branes wrapped on a spatial direction. The
effective theory describing the latter is the sypersymmetric
completion of the non-Abelian DBI action and it can be
seen that it indeed reduces to its Yang-Mills truncation
(6.2) in the limit where e! 0 [1,25].

As it stands the above description is not valid at x� � 0,
since at that point we also have the appearance of the NS
B-field. However, because the latter is of the form B �
B12�x��dx1 ^ dx2 it will remain unchanged under the
Lorentz transformation. If we now perform the duality
sequence, starting with the T-duality along X1, we even-
tually arrive at

 B! C�2�; (6.5)

i.e. we map the NS field into a Ramond-Ramond (RR) 2-
form potential. This naturally couples to the world volume
theory of the D1-strings. Hence, the effect of B will show
up in the theory of IIA F1s as if it were a C�2� in the theory
of IIB D1-strings, giving rise to a Chern-Simons term of
the form

 SCS �
1

2�l2s

Z
Tr�P�B	�: (6.6)

We conclude that, if we add this extra term SCS to Eq. (6.2),
we will obtain an action valid for all light-cone time,
including x� � 0, the bosonic sector of which will be
described by
 

S �
1

2�l2s

Z
d2�Tr

�
1

2
�DaXi�2 � g2

sl4s�2F2
ab

�
1

4�2g2
sl

4
s
�Xi; Xj	2 �DaX

1DbX
2abB12

�
: (6.7)

However, in order to be confident about the validity of
our approach we should work with the regularized version
of the background and perform the duality sequence in the
explicit presence of the regulator. After going to the
Lorentz transformed coordinates adapted to the spatial
compactification, one can check that the background in
string frame is

 ds2 � re����2dX�dX� � �dX9�2 � d~x2�; (6.8)

where

 � �
2

�

�
eX� arctan

�
eX�



�
�  log

�
: (6.9)

The dilaton becomes
 � � ��� logr̂; (6.10)

where the parameter r̂ is related to the radius of the original
lightlike compactification as

 r̂ �
eR

2�ls
: (6.11)

Additionally the 3-form potential, which has become RR
because of the S-duality, is given by

 F�12 �

������
32

�

s
3=2

e2�X��2 � 2 : (6.12)

We can now consider the theory of D1-strings.
Following [1], we will parametrize the action by choosing
the following gauge:

 X9 �
�
r
; X� �

�

r
���
2
p ; X� �

�

r
���
2
p �

���
2
p
y: (6.13)

Then, starting with the effective action for a single D1-
brane we can plug in the ansatz and expand up to quadratic
order in the fields. Once we take the gauge choice into
account the action reduces to
 

S �
1

4�l2s

Z
d2���@� ~x�2 � �@�y�2 � �@� ~x�2 � �@�y�2

� ab@ax1@bx2B12	: (6.14)

This is the Abelian version of (6.7) but with B replaced by
its regularized counterpart. At the non-Abelian level, the
action one would get would be nothing but (6.7) with the
appropriately regularized fields. At this stage we can safely
take the limit ! 0 to exactly recover (6.7).

Given that the behavior of our action mimics that of [1],
it will be valid at both the big bang and big crunch
singularities. The main difference of our description lies
in the introduction of the B-field at x� � 0. Around that
point the string coupling constant is�g0. By tuning this to
be small enough, the commutator term in (6.7) is forced to
vanish leading to the usual Green-Schwarz superstring in
the presence of an NS B-field.

VII. CONCLUSIONS AND OUTLOOK

In this note we have extended the scenario presented in
[1] to include a cosmological evolution from a big bang to
a big crunch. We were able to do so by appropriately gluing
together two copies of the LLD background. The gluing
procedure forced us to introduce an extra NS B-field which
was supported only at the turning point, x� � 0. This
particular solution was also seen as a certain representative
of a class of supergravity solutions involving the metric
tensor, B-field, and dilaton, which is a family of exact
string backgrounds. Since the former was also obtained
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as a limit of a regularized solution belonging to the same
class, we feel confident about its validity despite the

-function support for B. After obtaining the background
involving the evolution from a big bang to a big crunch, we
then proceeded along the lines of [1] to construct a matrix
string theory description of the physics. This was shown to
be valid at the big bang, the big crunch, and also at the
turning point.

Despite the above results, the physical interpretation of
the turning point is still quite unclear. This is closely
related to the somewhat exotic character of the NS
B-field whose field-strength satisfies dH � 0 and d H �
0. However, we argued that the turning point does indeed
admit a perturbative description: In terms of the NS5
picture, we ought to ensure that

 g0 �
~gs

��������
Nl2s

p
�r

� 1; (7.1)

where ~gs is the usual asymptotic value for the string
coupling of the original NS5s, which is naturally taken to
be small so that perturbative strings are well defined.
Moreover, it is easy to see that the curvature of the NS5
background is given by

 

1

N

�
1�

4Nl2s
6r2

�
: (7.2)

Since we are interested in the limit whereN ! 1, if we are
to keep this small around r ’ �r we should require that

 

Nl2s
�r2
� 1: (7.3)

This can be satisfied provided that �r is large enough in
string units, and follows from our requirement that �r scales
with N. Given that the solution also remains under control
in the NS5-brane description, it could be possible to find a
correspondence between our setup and the NS5 world
volume theory [40] or little string theory [41– 43]. In this
context it would be nice to have a better understanding of
the regularization, which could be related to a limiting
procedure in the NS5 picture. However, even without
referring to the NS5 interpretation, it seems clear that it
is possible to go to a corner of the moduli space so that the
theory is perturbative at the turning point. It would be
interesting to perform a more detailed analysis of this
point, in which the dual description in terms of the Milne
orbifold world sheet of [1] could be of help. However, all
these issues are beyond the scope of this note, and we will
leave them open for future investigations.
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