598 research outputs found
High chance that current atmospheric greenhouse concentrations commit to warmings greater than 1.5 °C over land
This is the final version of the article. Available from Springer Nature via the DOI in this record.The recent Paris UNFCCC climate meeting discussed the possibility of limiting global warming to 2 °C since pre-industrial times, or possibly even 1.5 °C, which would require major future emissions reductions. However, even if climate is stabilised at current atmospheric greenhouse gas (GHG) concentrations, those warming targets would almost certainly be surpassed in the context of mean temperature increases over land only. The reason for this is two-fold. First, current transient warming lags significantly below equilibrium or "committed" warming. Second, almost all climate models indicate warming rates over land are much higher than those for the oceans. We demonstrate this potential for high eventual temperatures over land, even for contemporary GHG levels, using a large set of climate models and for which climate sensitivities are known. Such additional land warming has implications for impacts on terrestrial ecosystems and human well-being. This suggests that even if massive and near-immediate emissions reductions occur such that atmospheric GHGs increase further by only small amounts, careful planning is needed by society to prepare for higher land temperatures in an eventual equilibrium climatic state.CH Acknowledges the NERC CEH National Capability fund
Technical note: A simple theoretical model framework to describe plant stomatal "sluggishness" in response to elevated ozone concentrations
This is the final version. Available from European Geosciences Union (EGU) via the DOI in this record.Elevated levels of tropospheric ozone, O3, cause damage to terrestrial vegetation, affecting leaf stomatal functioning and reducing photosynthesis. Climatic impacts under future raised atmospheric greenhouse gas (GHG) concentrations will also impact on the net primary productivity (NPP) of vegetation, which might for instance alter viability of some crops. Together, ozone damage and climate change may adjust the current ability of terrestrial vegetation to offset a significant fraction of carbon dioxide (CO2) emissions. Climate impacts on the land surface are well studied, but arguably large-scale modelling of raised surface level O3effects is less advanced. To date most models representing ozone damage use either O3concentration or, more recently, flux-uptake-related reduction of stomatal opening, estimating suppressed land-atmosphere water and CO2fluxes. However there is evidence that, for some species, O3damage can also cause an inertial sluggishness of stomatal response to changing surface meteorological conditions. In some circumstances (e.g. droughts), this loss of stomata control can cause them to be more open than without ozone interference. To both aid model development and provide empiricists with a system on to which measurements can be mapped, we present a parameter-sparse framework specifically designed to capture sluggishness. This contains a single time-delay parameter Ï„O3, characterizing the timescale for stomata to catch up with the level of opening they would have without damage. The larger the value of this parameter, the more sluggish the modelled stomatal response. Through variation of Ï„O3, we find it is possible to have qualitatively similar responses to factorial experiments with and without raised O3, when comparing to reported measurement time series presented in the literature. This low-parameter approach lends itself to the inclusion of ozone-induced inertial effects being incorporated in the terrestrial vegetation component of Earth system models (ESMs).NERC-CEH National Capability FundNatural Environment Research Counci
Weapon Size Versus Body Size as a Predictor of Winning in Fights Between Shore Crabs, Carcinus maenas (L.)
Relative body size (carapace width) and weapon size (chela length) were used as indicators of resource holding potential (RHP) in the agonistic behaviour of male shore crabs, Carcinus maenas (L.). Weapon size was found to be a more reliable predictor of the outcome of pairwise fights than body size. Crabs with longer chelae than their opponents were more likely to win fights than crabs with relatively larger bodies. Body size had less influence on the outcome of fights. Relative body and weapon size did not influence initiation of contests but did affect the likelihood of winning; however, this was significant only for weapon size. Winning crabs had heavier claws with greater surface area than losing crabs. There was no relationship between relative size and fight duration. The frequency of cheliped display increased with chela length and winners performed significantly more displays than losers
Extent of partial ice cover due to carbon cycle feedback in a zonal energy balance model
International audienceA global carbon cycle is introduced into a zonally averaged energy balance climate model. The physical model components are similar to those of Budyko (1969) and Sellers (1969). The new carbon components account for atmospheric carbon dioxide concentrations and the terrestrial and oceanic storage of carbon. Prescribing values for the sum of these carbon components, it is found that inclusion of a closed carbon cycle reduces the range of insolation over which stable partial ice cover solutions may occur. This highly simplified climate model also predicts that the estimated release of carbon from fossil fuel burning over the next hundred years could result in the eventual melting of the ice sheets. Keywords: climate, carbon cycle,zonal model, earth system modellin
Spatial and temporal variations in plant water-use efficiency inferred from tree-ring, eddy covariance and atmospheric observations
This is the final version of the article. Available from the European Geosciences Union (EGU) via the DOI in this record.Plant water-use efficiency (WUE), which is the ratio of the uptake of carbon dioxide through photosynthesis to the loss of water through transpiration, is a very useful metric of the functioning of the land biosphere. WUE is expected to increase with atmospheric CO2, but to decline with increasing atmospheric evaporative demand – which can arise from increases in near-surface temperature or decreases in relative humidity. We have used Δ13C measurements from tree rings, along with eddy covariance measurements from Fluxnet sites, to estimate the sensitivities of WUE to changes in CO2 and atmospheric humidity deficit. This enables us to reconstruct fractional changes in WUE, based on changes in atmospheric climate and CO2, for the entire period of the instrumental global climate record. We estimate that overall WUE increased from 1900 to 2010 by 48±22%, which is more than double that simulated by the latest Earth System Models. This long-term trend is largely driven by increases in CO2, but significant inter-annual variability and regional differences are evident due to variations in temperature and relative humidity. There are several highly populated regions, such as western Europe and East Asia, where the rate of increase of WUE has declined sharply in the last 2 decades. Our data-based analysis indicates increases in WUE that typically exceed those simulated by Earth System Models-implying that these models are either underestimating increases in photosynthesis or underestimating reductions in transpiration.The contributions of M. Groenendijk, C. Huntingford, and P. M. Cox were funded by the UK Natural Environment Research Council (NERC) HYDRA project. We thank Margaret Barbour for providing tree-ring data compiled from many different sources. This work used eddy covariance data acquired by the FLUXNET community and in particular by the following networks: AmeriFlux (US Department of Energy, Biological and Environmental Research, Terrestrial Carbon Program (DE-FG02-04ER63917 and DE-FG02-04ER63911)), AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada (supported by CFCAS, NSERC, BIOCAP, Environment Canada, and NRCan), GreenGrass, KoFlux, LBA, NECC, OzFlux, TCOS-Siberia, USCCC. We acknowledge the financial support to the eddy covariance data harmonization provided by CarboEuropeIP, FAO-GTOS-TCO, iLEAPS, Max Planck Institute for Biogeochemistry, National Science Foundation, University of Tuscia, Université Laval and Environment Canada and US Department of Energy and the database development and technical support from Berkeley Water Center, Lawrence Berkeley National Laboratory, Microsoft Research eScience, Oak Ridge National Laboratory, University of California – Berkeley, University of Virginia
Agonistic Behaviour and Biogenic Amines in Shore Crabs Carcinus Maenas
To investigate the role of certain neurohormones in agonistic behaviour, fights were staged between pairs of size-matched male shore crabs Carcinus maenas, and blood samples were taken immediately after the contests had been resolved. Samples were also taken from these crabs at rest (before and after fighting) and after walking on a treadmill. A control group of crabs also had samples taken on each experimental day. Concentrations of tyramine, dopamine, octopamine, serotonin (5-HT) and norepinephrine were determined in each blood sample using a gas chromatography/mass spectrometry (GC-MS) system. Norepinephrine was not detectable in any of the samples, but the standards were recovered. Tyramine values were not significantly different between the control group and the fought group, so tyramine does not appear to be important in agonistic behaviour. A comparison between the control and fought groups shows that fighting had an effect on the concentrations of octopamine, dopamine and 5-HT, but exercise only had an effect on octopamine levels, which showed a reduction from resting values in both winners and losers. Resting and post-fight concentrations of octopamine, dopamine and 5-HT were higher in winners than in losers. 5-HT concentration increased in the blood of fought crabs from resting values, whereas dopamine concentration decreased. In winners, octopamine concentrations decreased from resting values, but in losers octopamine levels increased from resting concentrations. The escalatory behaviour or intensity of fighting performed by winners and losers was related to dopamine levels but not to those of octopamine or 5-HT. Therefore, there appears to be a link between relative concentrations of these three amines (dopamine, octopamine and 5-HT) and fighting ability; the effects are not simply a result of activity. The better competitors have higher concentrations of these three amines at rest and after fighting
Spatial and temporal variations in plant water-use efficiency inferred from tree-ring, eddy covariance and atmospheric observations
Plant water-use efficiency (WUE), which is the ratio of the uptake of carbon dioxide through photosynthesis to the loss of water through transpiration, is a very useful metric of the functioning of the land biosphere. WUE is expected to increase with atmospheric CO2, but to decline with increasing atmospheric evaporative demand – which can arisefrom increases in near-surface temperature or decreases in relative humidity.We have used Δ13C measurements from tree rings, along witheddy covariance measurements from Fluxnet sites, to estimate thesensitivities of WUE to changes in CO2 and atmospheric humidity deficit.This enables us to reconstruct fractional changes in WUE, based on changes inatmospheric climate and CO2, for the entire period of the instrumental global climate record. We estimate that overall WUE increased from 1900 to2010 by 48 ± 22 %, which is more than double that simulated by thelatest Earth System Models. This long-term trend is largely driven byincreases in CO2, but significant inter-annual variability and regional differences are evident due to variations in temperature and relativehumidity. There are several highly populated regions, such as western Europeand East Asia, where the rate of increase of WUE has declined sharply in thelast 2 decades. Our data-based analysis indicates increases in WUE thattypically exceed those simulated by Earth System Models – implying thatthese models are either underestimating increases in photosynthesis orunderestimating reductions in transpiration
Impact of merging of historical and future climate data sets on land carbon cycle projections for South America
This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: The CRU–JRA data set is available from the CEDA archive of atmospheric data. The HadGEM2-ES climate model is available as one of the CMIP5 models, held by the portal of the Earth System Grid Federation. The code of the JULES model is held at jules.jchmr.org, and its outputs that inform Figures 3-7 and Figure S4 are available upon request from the authors.Earth System Models (ESMs) project climate change, but they often contain biases in their estimates of contemporary climate that propagate into simulated futures. Land models translate climate projections into surface impacts, but these will be inaccurate if ESMs have substantial errors. Bias concerns are relevant for terrestrial physiological processes which often respond non-linearly (i.e. contain threshold responses) and are therefore sensitive to absolute environmental conditions as well as changes. We bias-correct the UK Met Office ESM, HadGEM2-ES, against the CRU–JRA observation-based gridded estimates of recent climate. We apply the derived bias corrections to future projections by HadGEM2-ES for the RCP8.5 scenario of future greenhouse gas concentrations. Focusing on South America, the bias correction includes adjusting for ESM estimates that, annually, are approximately 1 degree too cold, for comparison against 21st Century warming of around 4 degrees. Locally, these values can be much higher. The ESM is also too wet on average, by approximately 1 mm·day−1, which is substantially larger than the mean predicted change. The corrected climate fields force the Joint UK Land Environment Simulator (JULES) dynamic global vegetation model to estimate land surface changes, with an emphasis on the carbon cycle. Results show land carbon sink reductions across South America, and in some locations, the net land–atmosphere CO2 flux becomes a source to the atmosphere by the end of this century. Transitions to a CO2 source is where increases in plant net primary productivity are offset by larger enhancements in soil respiration. Bias-corrected simulations estimate the rise in South American land carbon stocks between pre-industrial times and the end of the 2080s is ∼12 GtC lower than that without climate bias removal, demonstrating the importance of merging historical observational meteorological forcing with ESM diagnostics. We present evidence for a substantial climate-induced role of greater soil decomposition in the fate of the Amazon carbon sink.Newton FundNatural Environment Research Council (NERC
Dual versus single source models for estimating surface temperature of African savannah
International audiencePredictions of average surface temperature of a sparsely vegetated West-African savannah by both single and dual source models of surface energy partitioning are compared. Within the single source model, the ``excess resistance" to heat transfer away from the canopy (compared to momentum absorption) is characterised by parameter kB-1, where k is the von Kármán constant and B is the Stanton number. Two values of this parameter are used; first kB-1 = 2 (a value often used within surface energy balance models but primarily applicable to permeable vegetation types) and then 12.4 (a value applicable to the savannah in question, which consists more of bluff roughness elements). As expected, the latter parameterisation generates better predictions of surface temperature. To make accurate predictions of surface temperature using a dual source model, then that model's in-canopy aerodynamic resistance must be increased. Information on this increase is found through direct model intercomparison with the single source model parameterised with kB-1 = 12.4. Keywords: Penman-Monteith equation; Surface temperature; Canopy resistance; Savannah; Dual-Source mode
- …