250 research outputs found

    The Del1 deposition domain can immobilize 3α-hydroxysteroid dehydrogenase in the extracellular matrix without interfering with enzymatic activity

    Get PDF
    Developing methods that result in targeting of therapeutic molecules in gene therapies to target tissues has importance, as targeting can increase efficacy and decrease off target-side-effects. Work from my laboratory previously showed that the extracellular matrix protein Del1 is organized in the extracellular matrix (ECM) via the Del1 deposition domain (DDD). In this work, a fusion protein with DDD was made to assay the ability to immobilize an enzyme without disrupting enzymatic function. A prostatic cancer-derived cell line LNCap that grows in an androgen-dependent manner was used with 3α-hydroxysteroid dehydrogenase (3 αHD), which catalyzes dihydrotestosterone (DHT). Plasmids encoding a 3αHD:DDD fusion were generated and transfected into cultured cells. The effects of 3αHD immobilized in the ECM by the DDD were evaluated by monitoring growth of LNCap cells and DHT concentrations. It was demonstrated that the DDD could immobilize an enzyme in the ECM without interfering with function

    EDIL3 (EGF-Like Repeats And Discoidin I-Like Domains 3)

    Get PDF
    Review on EDIL3, with data on DNA/RNA, on the protein encoded and where the gene is implicated

    Galactic chemical evolution : Carbon through zinc

    Get PDF
    Copyright © 2006. The American Astronomical Society. Permission for further reuse of this content should be sought from the publisher or the rights holder. This is the final published version of the work, which was originally published at https://doi.org/10.1086/508914We calculate the evolution of heavy-element abundances from C to Zn in the solar neighborhood, adopting our new nucleosynthesis yields. Our yields are calculated for wide ranges of metallicity (Z = 0-Z circle dot) and the explosion energy (normal supernovae and hypernovae), based on the light-curve and spectra fitting of individual supernovae. The elemental abundance ratios are in good agreement with observations. Among the alpha-elements, O, Mg, Si, S, and Ca show a plateau at [Fe/H] <= -1, while Ti is underabundant overall. The observed abundance of Zn ([Zn/Fe] similar to 0) can be explained only by the high-energy explosion models, as it requires a large contribution of hypernovae. The observed decrease in the odd-Z elements (Na, Al, and Cu) toward low [Fe/H] is reproduced by the metallicity effect on nucleosynthesis. The iron-peak elements (Cr, Mn, Co, and Ni) are consistent with the observed mean values at -2.5 less than or similar to [Fe/H] less than or similar to -1, and the observed trend at the lower metallicity can be explained by the energy effect. We also show the abundance ratios and the metallicity distribution functions of the Galactic bulge, halo, and thick disk. Our results suggest that the formation timescale of the thick disk is similar to 1-3 Gyr.Peer reviewe

    Chemical Abundances in the Secondary Star of the Black Hole Binary V4641 Sagittarii (SAX J1819.3-2525)

    Get PDF
    We report on detailed spectroscopic studies performed for the secondary star in the black hole binary (micro-quasar) V4641 Sgr in order to examine its surface chemical composition and to see if its surface shows any signature of pollution by ejecta from a supernova explosion. High-resolution spectra of V4641 Sgr observed in the quiescent state in the blue-visual region are compared with those of the two bright well-studied B9 stars (14 Cyg and Îœ\nu Cap) observed with the same instrument. The effective temperature of V4641 Sgr (10500 ±\pm 200 K) is estimated from the strengths of He~{\sc i} lines, while its rotational velocity, v\it v sin i\it i (95 ±\pm 10 km s−1{}^{-1}), is estimated from the profile of the Mg~{\sc ii} line at 4481 \AA. We obtain abundances of 10 elements and find definite over-abundances of N (by 0.8 dex or more) and Na (by 0.8 dex) in V4641 Sgr. From line-by-line comparisons of eight other elements (C, O, Mg, Al, Si, Ti, Cr, and Fe) between V4641 Sgr and the two reference stars, we conclude that there is no apparent difference in the abundances of these elements between V4641 Sgr and the two normal late B-type stars, which have been reported to have solar abundances. An evolutionary model of a massive close binary system has been constructed to explain the abundances observed in V4641 Sgr. The model suggests that the progenitor of the black hole forming supernova was as massive as ~ 35 Msun on the main-sequence and, after becoming a ~ 10 Msun He star, underwent "dark" explosion which ejected only N and Na-rich outer layer of the He star without radioactive 56^{56}Ni.Comment: 13 pages, 14 figures. Accepted for publication in the PASJ: Publications of the Astronomical Society of Japa

    The Aspherical Properties of the Energetic Type Ic SN 2002ap as Inferred from its Nebular Spectra

    Full text link
    The nebular spectra of the broad-lined, SN 1998bw-like Type Ic SN 2002ap are studied by means of synthetic spectra. Two different modelling techniques are employed. In one technique, the SN ejecta are treated as a single zone, while in the other a density and abundance distribution in velocity is used from an explosion model. In both cases, heating caused by gamma-ray and positron deposition is computed (in the latter case using a Monte Carlo technique to describe the propagation of gamma-rays and positrons), as is cooling via forbidden-line emission. The results are compared, and although general agreement is found, the stratified models are shown to reproduce the observed line profiles much more accurately than the single-zone model. The explosion produced ~ 0.1 Msun of 56Ni. The distribution in velocity of the various elements is in agreement with that obtained from the early-time models, which indicated an ejected mass of ~ 2.5 Msun with a kinetic energy of 4 x 10^{51} erg. Nebular spectroscopy confirms that most of the ejected mass (~ 1.2 Msun) was oxygen. The presence of an oxygen-rich inner core, combined with that of 56Ni at high velocities as deduced from early-time models, suggests that the explosion was asymmetric, especially in the inner part.Comment: 24 pages, 6 figures, 2 Tables. Accepted by the Astrophysical Journa

    C, S, Zn and Cu abundances in planet-harbouring stars

    Full text link
    We present a detailed and uniform study of C, S, Zn and Cu abundances in a large set of planet host stars, as well as in a homogeneous comparison sample of solar-type dwarfs with no known planetary-mass companions. Carbon abundances were derived by {EW} measurement of two C I optical lines, while spectral syntheses were performed for S, Zn and Cu. We investigated possible differences in the behaviours of the volatiles C, S and Zn and in the refractory Cu in targets with and without known planets in order to check possible anomalies due to the presence of planets. We found that the abundance distributions in stars with exoplanets are the high [Fe/H] extensions of the trends traced by the comparison sample. All volatile elements we studied show [X/Fe] trends decreasing with [Fe/H] in the metallicity range -0.8<[Fe/H]<0.5, with significantly negative slopes of -0.39+-0.04 and -0.35+-0.04 for C and S, respectively. A comparison of our abundances with those available in the literature shows good agreement in most cases.Comment: 28 pages, 13 figures, accepted for publication in A&

    Evidence for a companion to BM Gem, a silicate carbon star

    Full text link
    Balmer and Paschen continuum emission as well as Balmer series lines of P Cygni-type profile from H_gamma through H_23 are revealed in the violet spectra of BM Gem, a carbon star associated with an oxygen-rich circumstellar shell (`silicate carbon star') observed with the high dispersion spectrograph (HDS) on the Subaru telescope. The blue-shifted absorption in the Balmer lines indicates the presence of an outflow, the line of sight velocity of which is at least 400 km s^-1, which is the highest outflow velocity observed to date in a carbon star. We argue that the observed unusual features in BM Gem are strong evidence for the presence of a companion, which should form an accretion disk that gives rise to both an ionized gas region and a high velocity, variable outflow. The estimated luminosity of ~0.2 (0.03-0.6) L_sun for the ionized gas can be maintained by a mass accretion rate to a dwarf companion of ~10^-8 M_sun yr^-1, while ~10^-10 M_sun yr^-1 is sufficient for accretion to a white dwarf companion. These accretion rates are feasible for some detached binary configurations on the basis of the Bond-Hoyle type accretion process. We concluded that the carbon star BM Gem is in a detached binary system with a companion of low mass and low luminosity. However, we are unable to determine whether this companion object is a dwarf or a white dwarf. The upper limits for binary separation are 210 AU and 930 AU for a dwarf and a white dwarf, respectively. We also note that the observed features of BM Gem mimic those of Mira (omi Cet), which may suggest actual similarities in their binary configurations and circumstellar structures.Comment: 11 pages, 2 figures, 1 table, accepted for publication in Ap
    • 

    corecore