1,558 research outputs found
Spectral emittance of soot
Spectral emittance of thin soot layers on transparent substrate
Depth perception not found in human observers for static or dynamic anti-correlated random dot stereograms
One of the greatest challenges in visual neuroscience is that of linking neural activity with perceptual experience. In the case of binocular depth perception, important insights have been achieved through comparing neural responses and the perception of depth, for carefully selected stimuli. One of the most important types of stimulus that has been used here is the anti-correlated random dot stereogram (ACRDS). In these stimuli, the contrast polarity of one half of a stereoscopic image is reversed. While neurons in cortical area V1 respond reliably to the binocular disparities in ACRDS, they do not create a sensation of depth. This discrepancy has been used to argue that depth perception must rely on neural activity elsewhere in the brain. Currently, the psychophysical results on which this argument rests are not clear-cut. While it is generally assumed that ACRDS do not support the perception of depth, some studies have reported that some people, some of the time, perceive depth in some types of these stimuli. Given the importance of these results for understanding the neural correlates of stereopsis, we studied depth perception in ACRDS using a large number of observers, in order to provide an unambiguous conclusion about the extent to which these stimuli support the perception of depth. We presented observers with random dot stereograms in which correlated dots were presented in a surrounding annulus and correlated or anti-correlated dots were presented in a central circular region. While observers could reliably report the depth of the central region for correlated stimuli, we found no evidence for depth perception in static or dynamic anti-correlated stimuli. Confidence ratings for stereoscopic perception were uniformly low for anti-correlated stimuli, but showed normal variation with disparity for correlated stimuli. These results establish that the inability of observers to perceive depth in ACRDS is a robust phenomenon
An HI Threshold for Star Cluster Formation in Tidal Debris
Super star clusters are young, compact star clusters found in the central
regions of interacting galaxies. Recently, they have also been reported to
preferentially form in certain tidal tails, but not in others. In this paper,
we have used 21 cm HI maps and the Hubble Space Telescope Wide Field Planetary
Camera 2 images of eight tidal tail regions of four merging galaxy pairs to
compare the kiloparsec scale HI distribution with the location of super star
clusters found from the optical images. For most of the tails, we find that
there is an increase in super star cluster density with increasing projected HI
column density, such that the star cluster density is highest when log N(HI) >=
20.6 cm^{-2}, but equal to the background count rate at lower HI column
density. However, for two tails (NGC 4038/39 Pos A and NGC 3921), there is no
significant star cluster population despite the presence of gas at high column
density. This implies that the N(HI) threshold is a necessary but not
sufficient condition for cluster formation. Gas volume density is likely to
provide a more direct criterion for cluster formation, and other factors such
as gas pressure or strength of encounter may also have an influence. Comparison
of HI thresholds needed for formation of different types of stellar structures
await higher resolution HI and optical observations of larger numbers of
interacting galaxies.Comment: 19 pages, 6 figures, 3 tables, accepted for publication in MNRA
The Revealing Dust: Mid-Infrared Activity in Hickson Compact Group Galaxy Nuclei
We present a sample of 46 galaxy nuclei from 12 nearby (z<4500 km/s) Hickson
Compact Groups (HCGs) with a complete suite of 1-24 micron 2MASS+Spitzer
nuclear photometry. For all objects in the sample, blue emission from stellar
photospheres dominates in the near-IR through the 3.6 micron IRAC band.
Twenty-five of 46 (54%) galaxy nuclei show red, mid-IR continua characteristic
of hot dust powered by ongoing star formation and/or accretion onto a central
black hole. We introduce alpha_{IRAC}, the spectral index of a power-law fit to
the 4.5-8.0 micron IRAC data, and demonstrate that it cleanly separates the
mid-IR active and non-active HCG nuclei. This parameter is more powerful for
identifying low to moderate-luminosity mid-IR activity than other measures
which include data at rest-frame lambda<3.6 micron that may be dominated by
stellar photospheric emission. While the HCG galaxies clearly have a bimodal
distribution in this parameter space, a comparison sample from the Spitzer
Nearby Galaxy Survey (SINGS) matched in J-band total galaxy luminosity is
continuously distributed. A second diagnostic, the fraction of 24 micron
emission in excess of that expected from quiescent galaxies, f_{24D}, reveals
an additional 3 nuclei to be active at 24 micron. Comparing these two mid-IR
diagnostics of nuclear activity to optical spectroscopic identifications from
the literature reveals some discrepancies, and we discuss the challenges of
distinguishing the source of ionizing radiation in these and other lower
luminosity systems. We find a significant correlation between the fraction of
mid-IR active galaxies and the total HI mass in a group, and investigate
possible interpretations of these results in light of galaxy evolution in the
highly interactive system of a compact group environment.Comment: 20 pages, 17 figures (1 color), uses emulateapj. Accepted for
publication by Ap
Star Clusters in the Tidal Tails of Interacting Galaxies: Cluster Populations Across a Variety of Tail Environments
We have searched for compact stellar structures within 17 tidal tails in 13
different interacting galaxies using F606W- and F814W- band images from the
Wide Field Planetary Camera 2 (WFPC2) on the Hubble Space Telescope (HST). The
sample of tidal tails includes a diverse population of optical properties,
merging galaxy mass ratios, HI content, and ages. Combining our tail sample
with Knierman et al. (2003), we find evidence of star clusters formed in situ
with Mv < -8.5 and V-I < 2.0 in 10 of 23 tidal tails; we are able to identify
cluster candidates to Mv = -6.5 in the closest tails. Three tails offer clear
examples of "beads on a string" star formation morphology in V-I color maps.
Two tails present both tidal dwarf galaxy (TDG) candidates and cluster
candidates. Statistical diagnostics indicate that clusters in tidal tails may
be drawn from the same power-law luminosity functions (with logarithmic slopes
~ -2 - -2.5) found in quiescent spiral galaxies and the interiors of
interacting systems. We find that the tail regions with the largest number of
observable clusters are relatively young (< 250 Myr old) and bright (V < 24 mag
arcsec^(-2)), probably attributed to the strong bursts of star formation in
interacting systems soon after periapse. Otherwise, we find no statistical
difference between cluster-rich and cluster-poor tails in terms of many
observable characteristics, though this analysis suffers from complex,
unresolved gas dynamics and projection effects.Comment: Accepted for publication in the Astrophysical Journal. 27 pages, 8
figure
Fuel characteristics pertinent to the design of aircraft fuel systems
Because of the importance of fuel properties in design of aircraft fuel systems the present report has been prepared to provide information on the characteristics of current jet fuels. In addition to information on fuel properties, discussions are presented on fuel specifications, the variations among fuels supplied under a given specification, fuel composition, and the pertinence of fuel composition and physical properties to fuel system design. In some instances the influence of variables such as pressure and temperature on physical properties is indicated. References are cited to provide fuel system designers with sources of information containing more detail than is practicable in the present report
Fuel characteristics pertinent to the design of aircraft fuel systems, Supplement I : additional information on MIL-F-7914(AER) grade JP-5 fuel and several fuel oils
Since the release of the first NACA publication on fuel characteristics pertinent to the design of aircraft fuel systems (NACA-RM-E53A21), additional information has become available on MIL-F7914(AER) grade JP-5 fuel and several of the current grades of fuel oils. In order to make this information available to fuel-system designers as quickly as possible, the present report has been prepared as a supplement to NACA-RM-E53A21. Although JP-5 fuel is of greater interest in current fuel-system problems than the fuel oils, the available data are not as extensive. It is believed, however, that the limited data on JP-5 are sufficient to indicate the variations in stocks that the designer must consider under a given fuel specification. The methods used in the preparation and extrapolation of data presented in the tables and figures of this supplement are the same as those used in NACA-RM-E53A21
- …