173 research outputs found

    Perfect fluids and generic spacelike singularities

    Full text link
    We present the conformally 1+3 Hubble-normalized field equations together with the general total source equations, and then specialize to a source that consists of perfect fluids with general barotropic equations of state. Motivating, formulating, and assuming certain conjectures, we derive results about how the properties of fluids (equations of state, momenta, angular momenta) and generic spacelike singularities affect each other.Comment: Considerable changes have been made in presentation and arguments, resulting in sharper conclusion

    Monotonic functions in Bianchi models: Why they exist and how to find them

    Full text link
    All rigorous and detailed dynamical results in Bianchi cosmology rest upon the existence of a hierarchical structure of conserved quantities and monotonic functions. In this paper we uncover the underlying general mechanism and derive this hierarchical structure from the scale-automorphism group for an illustrative example, vacuum and diagonal class A perfect fluid models. First, kinematically, the scale-automorphism group leads to a reduced dynamical system that consists of a hierarchy of scale-automorphism invariant sets. Second, we show that, dynamically, the scale-automorphism group results in scale-automorphism invariant monotone functions and conserved quantities that restrict the flow of the reduced dynamical system.Comment: 26 pages, replaced to match published versio

    A new proof of the Bianchi type IX attractor theorem

    Full text link
    We consider the dynamics towards the initial singularity of Bianchi type IX vacuum and orthogonal perfect fluid models with a linear equation of state. The `Bianchi type IX attractor theorem' states that the past asymptotic behavior of generic type IX solutions is governed by Bianchi type I and II vacuum states (Mixmaster attractor). We give a comparatively short and self-contained new proof of this theorem. The proof we give is interesting in itself, but more importantly it illustrates and emphasizes that type IX is special, and to some extent misleading when one considers the broader context of generic models without symmetries.Comment: 26 pages, 5 figure

    Dynamics of Bianchi type I elastic spacetimes

    Full text link
    We study the global dynamical behavior of spatially homogeneous solutions of the Einstein equations in Bianchi type I symmetry, where we use non-tilted elastic matter as an anisotropic matter model that naturally generalizes perfect fluids. Based on our dynamical systems formulation of the equations we are able to prove that (i) toward the future all solutions isotropize; (ii) toward the initial singularity all solutions display oscillatory behavior; solutions do not converge to Kasner solutions but oscillate between different Kasner states. This behavior is associated with energy condition violation as the singularity is approached.Comment: 28 pages, 11 figure

    Matter and dynamics in closed cosmologies

    No full text
    To systematically analyze the dynamical implications of the matter content in cosmology, we generalize earlier dynamical systems approaches so that perfect fluids with a general barotropic equation of state can be treated. We focus on locally rotationally symmetric Bianchi type IX and Kantowski-Sachs orthogonal perfect fluid models, since such models exhibit a particularly rich dynamical structure and also illustrate typical features of more general cases. For these models, we recast Einstein's field equations into a regular system on a compact state space, which is the basis for our analysis. We prove that models expand from a singularity and recollapse to a singularity when the perfect fluid satisfies the strong energy condition. When the matter source admits Einstein's static model, we present a comprehensive dynamical description, which includes asymptotic behavior, of models in the neighborhood of the Einstein model; these results make earlier claims about ``homoclinic phenomena and chaos'' highly questionable. We also discuss aspects of the global asymptotic dynamics, in particular, we give criteria for the collapse to a singularity, and we describe when models expand forever to a state of infinite dilution; possible initial and final states are analyzed. Numerical investigations complement the analytical results

    Self-gravitating statinary spherically symmetric systems in relativistic galactic dynamics

    Get PDF
    We study equilibrium states in relativistic galactic dynamics which are described by solutions of the Einstein-Vlasov system for collisionless matter. We recast the equations into a regular three-dimensional system of autonomous first order ordinary differential equations on a bounded state space. Based on a dynamical systems analysis we derive new theorems that guarantee that the steady state solutions have finite radii and masses

    Spherically symmetric relativistic stellar structures

    Full text link
    We investigate relativistic spherically symmetric static perfect fluid models in the framework of the theory of dynamical systems. The field equations are recast into a regular dynamical system on a 3-dimensional compact state space, thereby avoiding the non-regularity problems associated with the Tolman-Oppenheimer-Volkoff equation. The global picture of the solution space thus obtained is used to derive qualitative features and to prove theorems about mass-radius properties. The perfect fluids we discuss are described by barotropic equations of state that are asymptotically polytropic at low pressures and, for certain applications, asymptotically linear at high pressures. We employ dimensionless variables that are asymptotically homology invariant in the low pressure regime, and thus we generalize standard work on Newtonian polytropes to a relativistic setting and to a much larger class of equations of state. Our dynamical systems framework is particularly suited for numerical computations, as illustrated by several numerical examples, e.g., the ideal neutron gas and examples that involve phase transitions.Comment: 23 pages, 25 figures (compressed), LaTe

    Homoclinic chaos and energy condition violation

    Get PDF
    In this letter we discuss the connection between so-called homoclinic chaos and the violation of energy conditions in locally rotationally symmetric Bianchi type IX models, where the matter is assumed to be non-tilted dust and a positive cosmological constant. We show that homoclinic chaos in these models is an artifact of unphysical assumptions: it requires that there exist solutions with positive matter energy density ρ>0\rho>0 that evolve through the singularity and beyond as solutions with negative matter energy density ρ<0\rho<0. Homoclinic chaos is absent when it is assumed that the dust particles always retain their positive mass.In addition, we discuss more general models: for solutions that are not locally rotionally symmetric we demonstrate that the construction of extensions through the singularity, which is required for homoclinic chaos, is not possible in general.Comment: 4 pages, RevTe
    corecore