8,419 research outputs found
Effects of substrate and ambient gas on epitaxial growth indium oxide thin films
Indium oxide thin films were grown by pulsed electron beam deposition method at 500 °C on c-cut sapphire and (0 0 1) oriented LaAlO3 single crystal substrates in oxygen or argon gas. The effects of ambient gas and substrate symmetry on the growth of indium oxide thin films were studied. Stoichiometric In2O3 films are formed in oxygen, while oxygen deficient In2O2.5 films are grown in argon, with In metallic nanoclusters embedded in a In2O3 matrix (nanocomposite films). In both cases, epitaxial In2O3 films having the bixbyite phase were grown with various orientation relationships, depending upon the substrate symmetry and gas ambient (oxygen or argon). Domain matching epitaxy was used to describe the precise in-plane epitaxial film-substrate relationships. The differences in film texture were correlated to the differences in growth conditions, while the differences in the film properties were correlated to the film oxygen composition
Electronic Correlations in CoO2, the Parent Compound of Triangular Cobaltates
A 59Co NMR study of CoO2, the x=0 end member of AxCoO2 (A = Na, Li...)
cobaltates, reveals a metallic ground state, though with clear signs of strong
electron correlations: low-energy spin fluctuations develop at wave vectors q
different from 0 and a crossover to a Fermi-liquid regime occurs below a
characteristic temperature T*~7 K. Despite some uncertainty over the exact
cobalt oxidation state n this material, the results show that electronic
correlations are revealed as x is reduced below 0.3. The data are consistent
with NaxCoO2 being close to the Mott transition in the x -> 0 limit.Comment: 4 pages, submitte
First results in terrain mapping for a roving planetary explorer
To perform planetary exploration without human supervision, a complete autonomous rover must be able to model its environment while exploring its surroundings. Researchers present a new algorithm to construct a geometric terrain representation from a single range image. The form of the representation is an elevation map that includes uncertainty, unknown areas, and local features. By virtue of working in spherical-polar space, the algorithm is independent of the desired map resolution and the orientation of the sensor, unlike other algorithms that work in Cartesian space. They also describe new methods to evaluate regions of the constructed elevation maps to support legged locomotion over rough terrain
Testing use of mitochondrial COI sequences for the identification and phylogenetic analysis of New Zealand caddisflies (Trichoptera)
We tested the hypothesis that cytochrome c oxidase subunit 1 (COI) sequences would successfully discriminate recognised species of New Zealand caddisflies. We further examined whether phylogenetic analyses, based on the COI locus, could recover currently recognised superfamilies and suborders. COI sequences were obtained from 105 individuals representing 61 species and all 16 families of Trichoptera known from New Zealand. No sequence sharing was observed between members of different species, and congeneric species showed from 2.3 to 19.5% divergence. Sequence divergence among members of a species was typically low (mean = 0.7%; range 0.0–8.5%), but two species showed intraspecific divergences in excess of 2%. Phylogenetic reconstructions based on COI were largely congruent with previous conclusions based on morphology, although the sequence data did not support placement of the purse-cased caddisflies (Hydroptilidae) within the uncased caddisflies, and, in particular, the Rhyacophiloidea. We conclude that sequence variation in the COI gene locus is an effective tool for the identification of New Zealand caddisfly species, and can provide preliminary phylogenetic inferences. Further research is needed to ascertain the significance of the few instances of high intra-specific divergence and to determine if any instances of sequence sharing will be detected with larger sample sizes
Topical Calcineurin Inhibitors and Lymphoma Risk: Evidence Update with Implications for Daily Practice
Topical calcineurin inhibitors (TCIs), commercially available since 2000–2001, are the first and only topical medications approved for chronic treatment of atopic dermatitis (AD) in pediatric patients and remain a welcomed alternative to topical corticosteroids. In January 2006, the US Food and Drug Administration (FDA) issued a boxed warning requirement based on a theoretical risk of malignancy (including lymphoma) with TCI use. However, in the years since, analyses of epidemiologic and clinical data have failed to demonstrate a causal relationship between TCI use and malignancy or lymphoma risk, especially for pimecrolimus cream. In fact, the observed number of malignancies and lymphomas observed both in post-marketing surveillance and reported to the FDA using its adverse events reporting system is much lower among TCI-exposed patients than the expected number for the general population. Furthermore, among children enrolled in post-marketing pediatric registry studies for both tacrolimus and pimecrolimus followed for up to 5.5 years [10,724 patient-years (PY)] or 6.5 years (16,219 PY), respectively, the observed number of malignancies and lymphomas is very low and similar to the number expected for a sample of similar size in the general population. In addition to reporting these comparative malignancy and lymphoma data, this article provides a historical overview of the boxed warning requirement and critically evaluates the preclinical, clinical, and epidemiological evidence that has thus far failed to substantiate a relationship between TCI use and malignancy. The authors also provide practical clinical advice for optimizing AD management and patient care in the context of the boxed warning
On the relevance of large scale pulsed-laser deposition: Evidence of structural heterogeneities in ZnO thin films
Pulsed-laser deposition is known as a well-suited method for growing thin films of oxide compounds presenting a wide range of functional properties. A limitation of this method for industrial process is the very anisotropic expansion dynamics of the plasma plume, which induces difficulties to grow on large scale films with homogeneous thickness and composition. The specific aspect of the crystalline or orientation uniformity has not been investigated, despite its important role on oxide films properties. In this work, the crystalline parameters and the texture of zinc oxide films are studied as a function of position with respect to the central axis of the plasma plume. We demonstrate the existence of large non-uniformities in the films. The stoichiometry, the lattice parameter, and the distribution of crystallites orientations drastically depend on the position with respect to the plume axis, i.e., on the oblique incidence of the ablated species. The origin of these non-uniformities, in particular, the unexpected tilted orientation of the ZnO c-axis may be attributed to the combined effects of the oblique incidence and of the ratio between oxygen and zinc fluxes reaching the surface of the growing film
- …
