9,233 research outputs found

    Spin, charge, and orbital correlations in the one-dimensional t2g-orbital Hubbard model

    Full text link
    We present the zero-temperature phase diagram of the one-dimensional t2g-orbital Hubbard model, obtained using the density-matrix renormalization group and Lanczos techniques. Emphasis is given to the case for the electron density n=5 corresponding to five electrons per site, of relevance for some Co-based compounds. However, several other cases for electron densities between n=3 and 6 are also studied. At n=5, our results indicate a first-order transition between a paramagnetic (PM) insulator phase and a fully-polarized ferromagnetic (FM) state by tuning the Hund's coupling. The results also suggest a transition from the n=5 PM insulator phase to a metallic regime by changing the electron density, either via hole or electron doping. The behavior of the spin, charge, and orbital correlation functions in the FM and PM states are also described in the text and discussed. The robustness of these two states varying parameters suggests that they may be of relevance in more realistic higher dimensional systems as well.Comment: 9 pages, 8 figure

    The dipole anisotropy of WISE x SuperCOSMOS number counts

    Get PDF
    We probe the isotropy of the Universe with the largest all-sky photometric redshift dataset currently available, namely WISE~×\times~SuperCOSMOS. We search for dipole anisotropy of galaxy number counts in multiple redshift shells within the 0.10<z<0.350.10 < z < 0.35 range, for two subsamples drawn from the same parent catalogue. Our results show that the dipole directions are in good agreement with most of the previous analyses in the literature, and in most redshift bins the dipole amplitudes are well consistent with Λ\LambdaCDM-based mocks in the cleanest sample of this catalogue. In the z<0.15z<0.15 range, however, we obtain a persistently large anisotropy in both subsamples of our dataset. Overall, we report no significant evidence against the isotropy assumption in this catalogue except for the lowest redshift ranges. The origin of the latter discrepancy is unclear, and improved data may be needed to explain it.Comment: 5 pages, 4 figures, 2 tables. Published in MNRA

    Microlensing by Cosmic Strings

    Get PDF
    We consider the signature and detectability of gravitational microlensing of distant quasars by cosmic strings. Because of the simple image configuration such events will have a characteristic light curve, in which a source would appear to brighten by exactly a factor of two, before reverting to its original apparent brightness. We calculate the optical depth and event rate, and conclude that current predictions and limits on the total length of strings on the sky imply optical depths of \la 10^{-8} and event rates of fewer than one event per 10910^9 sources per year. Disregarding those predictions but replacing them with limits on the density of cosmic strings from the CMB fluctuation spectrum, leaves only a small region of parameter space (in which the sky contains about 3×1053\times10^5 strings with deficit angle of order 0.3 milli-arcseconds) for which a microlensing survey of exposure 10710^7 source-years, spanning a 20--40-year period, might reveal the presence of cosmic strings.Comment: 4 pages, accepted for publication in MNRA

    Evidence for Ubiquitous Collimated Galactic-Scale Outflows along the Star-Forming Sequence at z~0.5

    Full text link
    We present an analysis of the MgII 2796, 2803 and FeII 2586, 2600 absorption line profiles in individual spectra of 105 galaxies at 0.3<z<1.4. The galaxies, drawn from redshift surveys of the GOODS fields and the Extended Groth Strip, fully sample the range in star formation rates (SFRs) occupied by the star-forming sequence with stellar masses log M_*/M_sun > 9.5 at 0.3<z<0.7. Using the Doppler shifts of the MgII and FeII absorption lines as tracers of cool gas kinematics, we detect large-scale winds in 66+/-5% of the galaxies. HST/ACS imaging and our spectral analysis indicate that the outflow detection rate depends primarily on galaxy orientation: winds are detected in ~89% of galaxies having inclinations (i) <30 degrees (face-on), while the wind detection rate is only ~45% in objects having i>50 degrees (edge-on). Combined with the comparatively weak dependence of the wind detection rate on intrinsic galaxy properties, this suggests that biconical outflows are ubiquitous in normal, star-forming galaxies at z~0.5. We find that the wind velocity is correlated with host galaxy M_* at 3.4-sigma significance, while the equivalent width of the flow is correlated with host galaxy SFR at 3.5-sigma significance, suggesting that hosts with higher SFR may launch more material into outflows and/or generate a larger velocity spread for the absorbing clouds. Assuming that the gas is launched into dark matter halos with simple, isothermal density profiles, the wind velocities measured for the bulk of the cool material (~200-400 km/s) are sufficient to enable escape from the halo potentials only for the lowest-M_* systems in the sample. However, the outflows typically carry sufficient energy to reach distances of >50 kpc, and may therefore be a viable source of cool material for the massive circumgalactic medium observed around bright galaxies at z~0. [abridged]Comment: Submitted to ApJ. 61 pages, 25 figures, 4 tables, 4 appendices. Uses emulateapj forma

    On a zero speed sensitive cellular automaton

    Get PDF
    Using an unusual, yet natural invariant measure we show that there exists a sensitive cellular automaton whose perturbations propagate at asymptotically null speed for almost all configurations. More specifically, we prove that Lyapunov Exponents measuring pointwise or average linear speeds of the faster perturbations are equal to zero. We show that this implies the nullity of the measurable entropy. The measure m we consider gives the m-expansiveness property to the automaton. It is constructed with respect to a factor dynamical system based on simple "counter dynamics". As a counterpart, we prove that in the case of positively expansive automata, the perturbations move at positive linear speed over all the configurations

    Græsmarksafgrødernes sammensætning – en kompleks sag

    Get PDF
    Ønsker man at producere mælk med en given sammensætning, er det vigtigt både at fokusere på anvendelsen af forskellige græssorter samt at have fokus på planternes udviklingstrin

    Disk-Loss and Disk Renewal Phases in Classical Be Stars II. Detailed Analysis of Spectropolarimetric Data

    Full text link
    In Wisniewski et al. 2010, paper I, we analyzed 15 years of spectroscopic and spectropolarimetric data from the Ritter and Pine Bluff Observatories of 2 Be stars, 60 Cygni and {\pi} Aquarii, when a transition from Be to B star occurred. Here we anaylize the intrinsic polarization, where we observe loop-like structures caused by the rise and fall of the polarization Balmer Jump and continuum V-band polarization being mismatched temporally with polarimetric outbursts. We also see polarization angle deviations from the mean, reported in paper I, which may be indicative of warps in the disk, blobs injected at an inclined orbit, or spiral density waves. We show our ongoing efforts to model time dependent behavior of the disk to constrain the phenomena, using 3D Monte Carlo radiative transfer codes.Comment: 2 pages, 6 figures, IAU Symposium 27
    corecore