112 research outputs found

    Superconductivity in sputtered CuMO6S8

    Get PDF
    Samples were prepared by melting the metals, followed by annealing to various temperatures. The result was a structurally weak material. Sputtered films on sapphire substrates were prepared and studied. The substrates give the films mechanical strength and permit easy attachment of electrical leads. Materials were characterized by X-ray diffraction, electron microscopy, electrical resistance vs. temperature, and critical current measurements. Some of the results on CuMo6S8 are presented

    Characterization of porous low-k films using variable angle spectroscopic ellipsometry

    Get PDF
    doi:10.1063/1.2189018Variable angle spectroscopic ellipsometry (VASEℱ) is used as a tool to characterize properties such as optical constant, thickness, refractive index depth profile, and pore volume fraction of single and bilayer porous low-k films. The porous films were prepared using sacrificial pore generator (porogen) approach. Two sets of porous films with open- and closed-pore geometries were measured. Three models were used for data analysis: Cauchy, Bruggeman effective medium approximation (BEMA), and graded layer. Cauchy, a well-known model for transparent films, was used to obtain thickness and optical constant, whereas BEMA was utilized to calculate the pore volume fraction from the ellipsometric data. The Cauchy or BEMA models were then modified as graded layers, resulting in a better fit and a better understanding of the porous film. The depth profile of the porous film implied a more porous layer at the substrate-film interface. We found 3%-4% more porosity at the interface compared with the bulk for both films. This work shows that VASEℱ, a nondestructive measurement tool, can be used to characterize single- and multigraded layer porous films quickly and effectively.The authors would like to acknowledge the financial support of Semiconductor Research Corporation (SRC)

    Anisotropy of the Upper Critical Field and Critical Current in Single Crystal MgB2_2

    Get PDF
    We report on specific heat, high magnetic field transport and ac−ac-susceptibility measurements on magnesium diboride single crystals. The upper critical field Hc2H_{c2} for magnetic fields perpendicular and parallel to the Mg and B planes is presented for the first time in the entire temperature range. A very different temperature dependence has been observed in the two directions which yields to a temperature dependent anisotropy with Γ∌\Gamma \sim 5 at low temperatures and about 2 near TcT_c. A peak effect is observed in susceptibility measurements for H∌H \sim 2 T parallel to the c−c-axis and the critical current density presnts a sharp maximum for HH parallel to the ab-plane.Comment: 6 pages, 5 figure

    Superconductivity in the YIr2Si2 and LaIr2Si2 Polymorphs

    Full text link
    We report on existence of superconductivity in YIr2Si2 and LaIr2Si2 compounds in relation to crystal structure. The two compounds crystallize in two structural polymorphs, both tetragonal. The high temperature polymorph (HTP) adopts the CaBe2Ge2-structure type (space group P4/nmm) while the low temperature polymorph (LTP) is of the ThCr2Si2 type (I4/mmm). By studying polycrystals prepared by arc melting we have observed that the rapidly cooled samples retain the HTP even at room temperature (RT) and below. Annealing such samples at 900C followed by slow cooling to RT provides the LTP. Both, the HTP and LTP were subsequently studied with respect to magnetism and superconductivity by electrical resistivity, magnetization, AC susceptibility and specific heat measurements. The HTP and LTP of both compounds respectively, behave as Pauli paramagnets. Superconductivity has been found exclusively in the HTP of both compounds below Tsc (= 2.52 K in YIr2Si2 and 1.24 K in LaIr2Si2). The relations of magnetism and superconductivity with the electronic and crystal structure are discussed with comparing experimental data with the results of first principles electronic structure calculations
    • 

    corecore