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SUPERCONDUCTIVITY IN SPUTTERED CuMogSg

* * %
by Samuel Alterovitz, John A, Woollam, Lee Kammerdiner,

* %
Huey-Lin Luo, ** and Christopher Martin, *

Lewis Research Center

INTRODUCTION

In 1971, Chevrel, et al. (ref, 1) discovered a new class of materials,

now called ''chevrel phases,'' These have the chemical formula I\fIx‘L\tIo6
(S or Se)y, where M is any of a number of metals and x is variable,
(Because of this formula we will call these compounds ternary molybdenum.
chalcogenides,) In the following year, Matthias, et al, (ref. 2) reported
that many of these materials have high superconducting transition temper -
atures Tc. Odermat, et al, (ref, 3), reported superconducting upper crit-
ical fields, B s, above 50 tesla in materials with T 'S above 14 K, and
Foner, et al, (refs. 4 and 5) reported B 9 's above 60 tesla. By adding
small amounts of rare earth metals Fisher, et al, (ref. 6) were able to ob-
serve T0 tesla Bcz's in a lead-europium -gadolinium molybdenum sulfide,
This is by far the highest superconducting B o ever reported, Fisher has

reviewed some of the properties of the ternary molybdenum chalcogenides
at the 14th International Conference on Low Temperature Physics (ref, 7)
and at the Conference on the Physics of High Magnetic Fields in 1975
(ref, 8). _ _
In all of the above work, samples were prepared by melting the metals,
followed by annealing to various temperatures, The result was a structurally
weak material, - We have prepared and studied sputtered films on sapphire |
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substrates (ref, 9). The substrates give the films mechanical strength znd
permit easy attachment of electrical leads, We have also characterized the
materials by x-ray diffraction, electron microscopy, electrical resistance
vs, temperature, and B,,, T,, J, (critical current) measurements. We
present some of our results on CuMoGSB.

EXPERIMENTAL PROCEDURE

- Samples were prepared (in duplicate) by sputtering, at the University
of California, San Diego, where T, and J,'s were measur ed in zero mag-
netic fields, and x-ray characterlzamon was ‘also done, Sputtetrmg conditions
were the same as described in reference 9 except that instead of forming the
films at ambient temperatures and then annealing, the correct phase was
formed directly by heating the substrates in the range of 600- 800° C. The

T,'s were measured in a differential transformer at 100 Hz, Duplicate sam-

" ples were sent to NASA Lewis for high field studies, At NASA, T, was

measured inductively by a self inductance technique operating at about 100 kHz
and by d. c. electrical resistance methods. Temperatures were measured

?

‘with carbon resistors (calibrated in fields), with germanium resistance ther -

mometers, and with GaAs diodes. Calibrations were checked by measuring
T, onsets for pure indium and lead, and against the vapor pressure of liquid
helium, Magnetic fields up to 14 tesla were generated in large bore super-
conducting solenoids., All critical field measurements were made with the
field perpendicular to the plare of the samples and hence to the current. All
critical current measurements were made with the field perpendicular to the
current but parallel to the film. Film thickness measurement was a problem,
but our most reliable measurements we believe were from use of a "'profi-
lometer, ' a device measuring the displacement of a needle dragged across
the sample,

Two groups of samples were prepared, The basic reason which eould
account for the difference between group I and group II samples was that the
substrate temperatures during deposition were generally lower for ihe
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group JI samples, This was consistent with the fact that group II samples
showed broader x-ray diffraction peaks, higher resistivities and lower
room temperature to T, resistance ratios. Group I samples were thicker
and wider than group II samples, From profilometer measurements of the
films we get a thickness ranging from 0,6 ym to 1,0 pm within each sample
in group II, and an approximate thickness of 1.7+.2 pm for group I samples,
Critical currents were measured in samples from group II, Thicknesseés
varied from sample to sample, and within the same sample. In calculating
J, from I, for group Il samples, we used an effective thickness of 0.8 um
(by considering specific profiles) and a 1.7 mm width to calculate cross
sectional areas. Scratches could present regions of greatly reduced thick-
ness and could be missed by the profilometer, Thus the true effective
thickness for J ° (= Ic/area.) calculations could be much smaller than the
effective values used., Our J e numbers thus represent a lower limit for
these materials, '

Experimental Results and Comparison With Theory
A, Critical Fields

Figure 1 presents data on Béz vs. T, in sample number 118 CUIVI0638
from group I. The resistive transition was defined as the midpoint between
normal state resistance and zero resistance. Inductive transitions were
taken as the onset of diamagnetism. A number of other samples were studied
but will not be presented here,

Werthamer, Helfand, and Hohenberg (WHH) (ref. 10) have calculated the
upper critical field, B ey @s a function of temperature and the slope | |
dB 9 /dT including the effects of spin-orbit scattering and paramagnetic
limiting, The assumptions of the theory are that the material is "dirty"

(I << & where 1 isthe electron mean free path, and i is the coherence
length) and that the time between spin flip collisions is long compared with
“non-spin flipping collision times. WHH also agsume weak coupling (weak
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electron-phonon interaction), We have used their expression relating B 2
to T, to make computer generated plots of B co V8. T, for various
values of the Maki paramagnetic pair breakmg parameter o, and the spin-~
orbit scattering parameter, ?L

Figure 1 has a plot of the WHH theory for Ago =@ which gives the
highest possible values of B 3 for this theory. Notlce that the experi-
mental points at low temperatures are above the theoretical curve by sev-
eral percent, Experimental data were nearer to the Agop =% line for sam-
ples of group II (numbers 181, 191 (data not shown here), The WHH plot is
very sensitive to the experimentally determined slope near Tc.- The slope
used for the plot in figure 1 was determined by matching the smoothed ex-
perimental data to WHH theory for redvied temperatures to between 0,7
and 1,0, where t = T/Tc. This leads 'Us to believe the experimental data
for this sample are truly above the maximum WHH theoretical limit in the -
lower temperature range (0 <t < 0. 7). | | S

There are several possible reasons for this, WHH theory is for dirty,
weak coupling materials with an isotropic Fermi surface. Any departure
from thisse three assumptions will give a higher theoretical curve for
B bz(T). A clean sample has a higher theoretical B 9 than a dirty one by
as much as 5 percent (refs, 11 and 12). A strong coupling material has a
higher Bc2 than one in the weak coupling limit, especially for amorphous
materials (ref. 13). Finally, anisotrophy in the Fermi surface greatly
enhances (ref. 14) the values of Bcz(O) We believe that our samples have
an electron phonon coupllng constant A ~ 1, comparable (ref 15) to other . .
ternary molybdenum chalcogenides. ’I‘herefore, we believe we have a
moderately strong coupling material, However, anisotropy and non-dirty
limit e_onditions are viable possibilities. More experiments need to be done
to distingui'sh between these mechanisms.

For the Maki paramagnetlc 11m1t1ng parameter o, the WHH theory
gives the relation '

a=0. 53( dBcz/dT T/T " i _' | ()
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where B, and T are intesla and Kelvin, respectively. From an average
slope of about -2, 4 tesla/Kelvin one gets a & 1,2 for our samples, Also
from WHH one gets

o = 2. 35%10° py (2)

where v is the coeffizient of the linear term in the specific heat in Joules/
mus and p is the electrical resistivity in ohm-m., We have measured
~ 180x10~8 ohm-m in sample number 118, Thus, y =290 joules/m 3g2
which is roughly the value found experimentally by Fradin, et al. (ref, 15)
for other ternary molybdenum chalcogenides. Thus our value of 1, 2 for the
paramagnetic limiting parameter, is consistent with other measurements,
Another useful relation (ref, 11) is '

¢ = 2.37x108 pyl/2 -. (3)

valid in the extreme dlrty limit, &£ >> I, where g is the Ginzburg -Landau
kappa. Also

K:Bcz/ﬁBc o | | | @
where B is the bulk thermodynamlc critical field, gwen by

B, =7.65x107 y 1/2 1 T, | | o (5)
so,

k= Bcz/[l. osx1073 y1/2 'I‘c:] o x ®
and by elim'i.nating 7;1/ 2 from (3) and (6), |

9 PBoy.

Te

2 = 2.9%10
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Using experimental values for Bcz and T _, and ignoring variations of g

with temperature yields

c?

K ~ 80 (8)
From (4) we get the bulk critical field

B, ~ 0,135 Tesla 9)
From ref, 11:

B, ~ B, (n x + 0. 08)(1/2_ k ~ 5.3x10™° Tesla (10)

Thus we have values for the Ginzburg-Landau parameter (10) and all three
critical fields, B,q, B, and B, assuming the dirty limit.

cl? “¢?

B. Critical Currents and Sealing Laws

As discugsed by Ullmaier (ref. 16) and by Campbell and Evetts (ref, 17),
one can predict the magnetic field and temperature dependence of the critical
current for various models for pinning force densities, P. Pinning force den-
sities are measured by multiplying the critical current density J c times the
value of the field in which J, was measu_red (ref, 16).. Typical sources of
pinning of flux lines are precipitates, dislocations, deformations, grain bound-

-aries, interstitial defects, vacancies, and voids, The results of model cal-
culations for these pinning types can be expressed as

P =DED)B o ()" o o
~where D, n, m are constants, ¢ is the Ginzburg-Landau kappa, and £(b)

is a function of the reduced magnetic field b only, and not of temperature.
x varies about 20 percent between T, and 0 K, but we neglect this for the
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present, Function f(b) usually is of the form
f(b) = b* (1 - b)? (12)

where yx and I are constants (ref, 17). Equation (11) is called a 'uni-
versal scaling'' law of experimental results, and if it fits experimental data,
it suggests that the same pinning mechanism(s) operate over the entire field
and temperature range considered. The usefulness of sealing is that num-
bers for critical currents at various T's and B's can be found with a
limited number of actual measurements.

Critical currents, J,, were measured as a function of magnetic field
at several temperatures, and as a function ¢f temperature in zero field,
Measuring J o in a series of fields at fixed temperatures gives curves such
as those plotied in figure 2. Here, b is the reduced field, B/B c_'2('I‘). The
maximum pinning force for each of the six temperatures shown occurs at

b = 0.27, When these data are replotted by dividing by the pinning force at

the maximum, Pmax’ for each temperature, the data fall on nearly a single
curve or '"'scaling'' plot (ref, 16) shown in figure 3, In figure 4 we plot the
value of _the peak pinning force density, Pmax’ for each temperature in fig-
ure 2, as a function of critical field B c2_(T) on a log-log graph., A straight

line results having a slope of ~2,5. This indicates a value of n = 2.5 in

equation (11), From figure 3 we find P/P
dependence

max data closely follow a

P/Pmax =f(b) =~ b (1 - b2 | | (13)

where x is about 0. 6.
Thus,

for oiJ_z- samples., The temperature dependence of kappa is still ignored,

Since P =J (T) X B, and the only temperature dependent part in (14) is
B o(T), then |



To(T) o By (192 (15)

From equation (4) and the '"'thermodynamic" temperature variation for
B, (=B (0)(1 - t 2)) (ref, 11) we get

T (T) =T (0)(1 - t3)2-5 | (16)

Figure 5 shows the good fit of this expression to our data, using our experi-
mental T,=8.2K for sample number 181 (representative of group II).
This is further evidence for the good applicability of a scaling law (eq. (14))
to our data,

C. Resistivity vs, Temperature

_ We have measured the electrical resistivity at room temperature and
just above T in several samples, Typical ratios of these values,
p300/pT R are on the order of two for samples in group II, On sample num -

ber 118 (from group I) we find p300/pT =4,4, In addltlon we have made

very detailed studies of pvs., T from T, to 300 K in number 118, The
resistivity is proportional to T2 from 10 K to 30 K (shown in fig. 6), has

an inflection point near 40 K, and has a less than linear dependence on T
above 40 K. This behavior of resistivity is qualitatively similar to that found
in the high T ¢» A-15 structure-materials, and is very different from that in
normal metals (ref. 18).

CONCLUDING REMARKS

it would be inappropriate in this paper to make a complete discussion of
predictions from various pinning models, It is not likely that we have pre-.
cipitates as neither the shape of f(b) nor the power 2,5 of B c2(T) allow for




9

such a mechanism, nor do the electron microscope results support it, How-
ever, grain boundaries, a second phase, and probably deformations and dis-
locations are likely contributors to the pinning force. We do find that a uni-
versal scaling law for the critical currents is obeyed. Therefore, we know
that the same pinning mechanism(s) hold at all the temperatures., Further
work is needed to find out the exact pinning mechanism by changing the sam-
ple characteristics. |

The magnitude of the pinning force densities are down by about a factor
of 50 or less (depending on the reliability of our film thickness measure-
ments) from the best examples existing now for other materials like Nb-Ti
(ref, 16). The values of J order of magnitude lower than the best com-
mercial NbgSn.

From the critical field vs. temperature data we are able to deduce
values for the spin-orbit coupling paramuter, «, the paramagnetic limiting
parameter Agor the heat capacity coefficient v, the Gxnzburg-Landau K,

and the critical fields B,,, B,, and B 4.
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