6,432 research outputs found

    Recent experiences using finite-element-based structural optimization

    Get PDF
    Structural optimization has been available to the structural analysis community as a tool for many years. The popular use of displacement method finite-element techniques to analyze linearly elastic structures has resulted in an ability to calculate the weight and constraint gradients inexpensively for numerical optimization of structures. Here, recent experiences in the investigation and use of structural optimization are discussed. In particular, experience with the commercially available ADS/NASOPT code is addressed. An overview of the ADS/NASOPT procedure and how it was implemented is given. Two example problems are also discussed

    Entanglement between an electron and a nuclear spin 1/2

    Get PDF
    We report on the preparation and detection of entangled states between an electron spin 1/2 and a nuclear spin 1/2 in a molecular single crystal. These were created by applying pulses at ESR (9.5 GHz) and NMR (28 MHz) frequencies. Entanglement was detected by using a special entanglement detector sequence based on a unitary back transformation including phase rotation.Comment: 4 pages, 3 figure

    Temporal and spatial variability of snow accumulation in central Greenland

    Get PDF
    Snow accumulation records from central Greenland are explored to improve the understanding of the accumulation signal in Greenland ice core records. Results from a “forest” of 100 bamboo poles and automated accumulation monitors in the vicinity of Summit as well as shallow cores collected in the Summit and Crete areas are presented. Based on these accumulation data, a regression has been calculated to quantify the signal-to-noise variance ratio of ice core accumulation signals on a variety of temporal (1 week to 2 years) and spatial (20 m to 200 km) scales. Results are consistent with data obtained from year-round automated accumulation measurements deployed at Summit which suggest that it is impossible to obtain regional snow accumulation data with seasonal resolution using four accumulation monitors positioned over a length scale of ∼30 km. Given this understanding of the temporal and spatial dependence of noise in the ice core accumulation signal, the accumulation records from 17 shallow cores are revisited. Each core spans the time period from 1964 to 1983. By combining the accumulation records, the regional snow accumulation record has been obtained for this period. The results show that 9 of the 20 years can be identified as having an accumulation different from the 20 year mean with 99% confidence. The signal-to-noise variance ratio for the average accumulation signal sampled at annual intervals is 5.8±0.5. The averaged accumulation time series may be useful to climate modelers attempting to validate their models with accurate regional hydrologic data sets

    Stability analysis of polarized domains

    Full text link
    Polarized ferrofluids, lipid monolayers and magnetic bubbles form domains with deformable boundaries. Stability analysis of these domains depends on a family of nontrivial integrals. We present a closed form evaluation of these integrals as a combination of Legendre functions. This result allows exact and explicit formulae for stability thresholds and growth rates of individual modes. We also evaluate asymptotic behavior in several interesting limits.Comment: 12 pages, 3 figures, Late

    Seasonal variations of glaciochemical, isotopic and stratigraphic properties in Siple Dome (Antarctica) surface snow

    Get PDF
    Six snow-pit records recovered from Siple Dome, West Antarctica, during 1994 are used to study seasonal variations in chemical (major ion and H202), isotopic (deuterium) and physical stratigraphic properties during the 1988-94 period. Comparison of δD measurements and satellite-derived brightness temperature for the Siple Dome area suggests that most seasonal SD maxima occur within ±4 weeks of each 1 January. Several other chemical species (H2O2, non-sea-salt (nss) SO4 2-, methanesulfonic acid and NO3-) show coeval peaks with SD, together providing an accurate method for identifying summer accumulation. Sea-salt-derived species generally peak during winter/spring, but episodic input is noted throughout some years. No reliable seasonal signal is identified in species with continental sources (nssCa2+ nss Mg2+), NH4 + or nssCl-. Visible strata such as large depth-hoar layers (\u3e5 cm) are associated with summer accumulation and its metamorphosis, but smaller hoar layers and crusts are more difficult to interpret. A multi-parameter approach is found to provide the most accurate dating of these snow-pit records, and is used to determine annual layer thicknesses at each site Significant spatial accumulation variability exists on an annual basis, but mean accumulation in the sampled 10 km2 grid for the 1988-94 period is fairly uniform

    COMPTEL gamma-ray observations of the C4 solar flare on 20 January 2000

    Get PDF
    The “Pre-SMM” (Vestrand and Miller 1998) picture of gamma-ray line (GRL) flares was that they are relatively rare events. This picture was quickly put in question with the launch of the Solar Maximum Mission (SMM). Over 100 GRL flares were seen with sizes ranging from very large GOES class events (X12) down to moderately small events (M2). It was argued by some (Bai 1986) that this was still consistent with the idea that GRL events are rare. Others, however, argued the opposite (Vestrand 1988; Cliver, Crosby and Dennis 1994), stating that the lower end of this distribution was just a function of SMM’s sensitivity. They stated that the launch of the Compton Gamma-ray Observatory (CGRO) would in fact continue this distribution to show even smaller GRL flares. In response to a BACODINE cosmic gamma-ray burst alert, COMPtonTELescope on the CGRO recorded gamma rays above 1 MeV from the C4 flare at 0221 UT 20 January 2000. This event, though at the limits of COMPTEL’s sensitivity, clearly shows a nuclear line excess above the continuum. Using new spectroscopy techniques we were able to resolve individual lines. This has allowed us to make a basic comparison of this event with the GRL flare distribution from SMM and also compare this flare with a well-observed large GRL flare seen by OSSE

    X- and gamma-ray observations of the 15 November 1991 Solar Flare

    Get PDF
    This work expands the current understanding of the 15 November 1991 Solar Flare. The flare was a well observed event in radio to gamma-rays and is the first flare to be extensively studied with the benefit of detailed soft and hard X-ray images. In this work, we add data from all four instruments on the Compton Gamma Ray Observatory. Using these data we determined that the accelerated electron spectrum above 170 keV is best fit with a power law with a spectral index of −4.6, while the accelerated proton spectrum above 0.6 MeV is fit with a power law of spectral index −4.5. From this we computed lower limits for the energy content of these particles of∼1023 ergs (electrons) and ∼1027 ergs (ions above 0.6 MeV). These particles do not have enough energy to produce the white-light emission observed from this event. We computed a time constant of 26+20−15 s for the 2.223 MeV neutron capture line, which is consistent at the 2σ level with the lowest values of ∼70 s found for other flares. The mechanism for this short capture time may be better understood after analyses of high energy EGRET data that show potential evidence for pion emission near ∼100 MeV

    Comptel observations of the quasar PKS 0528+134

    Get PDF
    During Phase I and Phase II of the CGRO‐mission, the quasar PKS 0528+134 was in the field of view of the COMPTEL instrument during several viewing periods. The quasar was detected by COMPTEL mainly at energies above 10 MeV. Below 10 MeV there is evidence for the source during some CGRO viewing periods, while below 3 MeV no signal is detected. The detections and non‐detections during different viewing periods follow the trend seen by EGRET, thereby indicating a time‐variable MEV‐flux of the quasar. The COMPTEL spectral results together with the simultaneously measured EGRET spectrum, indicate a spectral break in the upper part of the COMPTEL energy range at energies between 10 MeV and 30 MeV
    corecore