74 research outputs found

    VUV and X-ray coherent light with tunable polarization from single-pass free-electron lasers

    Full text link
    Tunable polarization over a wide spectral range is a required feature of light sources employed to investigate the properties of local symmetry in both condensed and low-density matter. Among new-generation sources, free-electron lasers possess a unique combination of very attractive features, as they allow to generate powerful and coherent ultra-short optical pulses in the VUV and X-ray spectral range. However, the question remains open about the possibility to freely vary the light polarization of a free-electron laser, when the latter is operated in the so-called nonlinear harmonic-generation regime. In such configuration, one collects the harmonics of the free-electron laser fundamental emission, gaining access to the shortest possible wavelengths the device can generate. In this letter we provide the first experimental characterization of the polarization of the harmonic light produced by a free-electron laser and we demonstrate a method to obtain tunable polarization in the VUV and X-ray spectral range. Experimental results are successfully compared to those obtained using a theoretical model based on the paraxial solution of Maxwell's equations. Our findings can be expected to have a deep impact on the design and realization of experiments requiring full control of light polarization to explore the symmetry properties of matter samples

    Cooperative effects in nuclear excitation with coherent x-ray light

    Full text link
    The interaction between super-intense coherent x-ray light and nuclei is studied theoretically. One of the main difficulties with driving nuclear transitions arises from the very narrow nuclear excited state widths which limit the coupling between laser and nuclei. In the context of direct laser-nucleus interaction, we consider the nuclear width broadening that occurs when in solid targets, the excitation caused by a single photon is shared by a large number of nuclei, forming a collective excited state. Our results show that for certain isotopes, cooperative effects may lead to an enhancement of the nuclear excited state population by almost two orders of magnitude. Additionally, an update of previous estimates for nuclear excited state population and signal photons taking into account the experimental advances of the x-ray coherent light sources is given. The presented values are an improvement by orders of magnitude and are encouraging for the future prospects of nuclear quantum optics.Comment: 22 pages, 4 figures, 5 tables; updated to the published version, one additional results tabl

    Single-shot transverse coherence in seeded and unseeded free-electron lasers: A comparison

    Get PDF
    The advent of x-ray free-electron lasers (FELs) drastically enhanced the capabilities of several analytical techniques, for which the degree of transverse (spatial) coherence of the source is essential. FELs can be operated in self-amplified spontaneous emission (SASE) or seeded configurations, which rely on a qualitatively different initialization of the amplification process leading to light emission. The degree of transverse coherence of SASE and seeded FELs has been characterized in the past, both experimentally and theoretically. However, a direct experimental comparison between the two regimes in similar operating conditions is missing, as well as an accurate study of the sensitivity of transverse coherence to key working parameters. In this paper, we carry out such a comparison, focusing in particular on the evolution of coherence during the light amplification process

    Quantification of CO2 generation in sedimentary basins through carbonate/clays reactions with uncertain thermodynamic parameters

    Get PDF
    We develop a methodological framework and mathematical formulation which yields estimates of the uncertainty associated with the amounts of CO2generated by Carbonate-Clays Reactions (CCR) in large-scale subsurface systems to assist characterization of the main features of this geochemical process. Our approach couples a one-dimensional compaction model, providing the dynamics of the evolution of porosity, temperature and pressure along the vertical direction, with a chemical model able to quantify the partial pressure of CO2resulting from minerals and pore water interaction. The modeling framework we propose allows (i) estimating the depth at which the source of gases is located and (ii) quantifying the amount of CO2generated, based on the mineralogy of the sediments involved in the basin formation process. A distinctive objective of the study is the quantification of the way the uncertainty affecting chemical equilibrium constants propagates to model outputs, i.e., the flux of CO2. These parameters are considered as key sources of uncertainty in our modeling approach because temperature and pressure distributions associated with deep burial depths typically fall outside the range of validity of commonly employed geochemical databases and typically used geochemical software. We also analyze the impact of the relative abundancy of primary phases in the sediments on the activation of CCR processes. As a test bed, we consider a computational study where pressure and temperature conditions are representative of those observed in real sedimentary formation. Our results are conducive to the probabilistic assessment of (i) the characteristic pressure and temperature at which CCR leads to generation of CO2in sedimentary systems, (ii) the order of magnitude of the CO2generation rate that can be associated with CCR processes

    High-field high-repetition-rate sources for the coherent THz control of matter

    Get PDF
    Ultrashort flashes of THz light with low photon energies of a few meV, but strong electric or magnetic field transients have recently been employed to prepare various fascinating nonequilibrium states in matter. Here we present a new class of sources based on superradiant enhancement of radiation from relativistic electron bunches in a compact electron accelerator that we believe will revolutionize experiments in this field. Our prototype source generates high-field THz pulses at unprecedented quasicontinuous-wave repetition rates up to the MHz regime. We demonstrate parameters that exceed state-of-the-art laser-based sources by more than 2 orders of magnitude. The peak fields and the repetition rates are highly scalable and once fully operational this type of sources will routinely provide 1 MV/cm electric fields and 0.3 T magnetic fields at repetition rates of few 100 kHz. We benchmark the unique properties by performing a resonant coherent THz control experiment with few 10 fs resolution

    PERSPECTIVAS DEL PROCESO DE GLOBALIZACIÓN Y SU INFLUENCIA SOBRE LOS DERECHOS HUMANOS ECONÓMICOS, SOCIALES Y CULTURALES

    Get PDF
    El escenario internacional se encuentra en constante transformación debido a lo que se ha denominado el proceso de “globalización”. Este afecta las relaciones internaciones interestatales e influye en la vida cotidiana de los individuos. El Derecho Internacional y más específicamente el Derecho Internacional de los Derechos Humanos no es ajeno a este proceso. La investigación afirma que nos encontramos frente a una etapa de transnacionalización de los Derechos Humanos, que permite que los individuos cuenten con mayor protección en ámbitos supranacionales. También hace especial mención a los derechos Económicos Sociales y Culturales, analiza el debate sobre el pluralismo jurídico y la eficacia diferencial. En la metodología empleada se revisan fuentes documentales y se realiza un análisis de algunos derechos particulares previstos en el Pacto de Derechos Económicos, Sociales y Culturales. Los planteamientos permiten afirmar que el proceso de globalización ha determinado la transnacionalización de los Derechos Humanos, surgiendo de dicho fenómeno consecuencias positivas y negativas en cuanto a su cumplimiento

    Probabilistic modeling of field-scale CO2 generation by carbonate-clay reactions in sedimentary basins

    Get PDF
    This work explores a probabilistic modeling workflow and its implementation targeting CO2 generation rate and CO2 source location by the occurrence of carbonate-clay reactions (CCRs) in three-dimensional realistic sedimentary basins. We ground our study on the methodology proposed for a one-dimensional case study and a single CCR formulation by which includes a framework to account for thermodynamic parameter uncertainties. This methodology is here extended to a realistic three-dimensional sedimentary basin setting and transferred to encompass different types of CCRs, including two newly formulated CCRs which account for minerals typically observed in sedimentary environments. While testing the ability of the selected procedure to model diverse CCRs in three-dimensional realistic subsurface sedimentary systems, we quantitatively compare the impact of CCR formulation on the spatial distribution of CO2 source location, temperature and pressure compatible with CO2 gaseous generation, and CO2 generation rate in three-dimensional environments characterized by complex and non-uniform stratigraphy. The application of the procedure to various types of CCRs enables us to provide an insight into the impact of mineralogical composition on the activation temperature and pressure and the amount of CO2 released by the different CCR mechanisms. Finally, we show the implementation of the proposed probabilistic framework to define scenarios associated with various levels of probability to be used as the input and boundary conditions for CO2 migration and transport models in the subsurface

    Simulations of the Plastic Behavior of Amorphous Glassy Bisphenol-A Polycarbonate

    No full text
    A protocol for studying the plastic deformation of amorphous glassy polymers is presented. The protocol is based on a viable computational procedure which combines constant-stress molecular dynamics simulations and fixed-cell energy minimizations, followed by kinetic, configurational, and energy analyses. It is shown that the computational results can be accounted for within a "potential energy landscape" theoretical framework, in which the plastic transition is interpreted as a crossing between and a collapse onto each other of "ideal (thermodynamic) structures." The procedure is applied to bis-phenol-A-polycarbonate (BPA-PC), but is equally valid for a wide variety of polymeric species. Allowing for the limited size of the simulation cell, the high strain rate, and the fact that the simulation are conducted at low temperature, the values of the density, Young’s modulus, yield strain, yield stress, activation energy, and activation volume are in fair agreement with the experimental data on BPA-PC. The analysis of the results shows that the plastic relaxation for this polymer has both a collective and cooperative character (as in classical percolation theories), involves a significant fraction of the simulation cell, and can be viewed as a "nanoscopic shear band.
    corecore