14,348 research outputs found
Coherent state LOQC gates using simplified diagonal superposition resource states
In this paper we explore the possibility of fundamental tests for coherent
state optical quantum computing gates [T. C. Ralph, et. al, Phys. Rev. A
\textbf{68}, 042319 (2003)] using sophisticated but not unrealistic quantum
states. The major resource required in these gates are state diagonal to the
basis states. We use the recent observation that a squeezed single photon state
() approximates well an odd superposition of coherent
states () to address the diagonal resource
problem. The approximation only holds for relatively small and hence
these gates cannot be used in a scaleable scheme. We explore the effects on
fidelities and probabilities in teleportation and a rotated Hadamard gate.Comment: 21 pages, 12 figure
Discovery of a new INTEGRAL source: IGR J19140+0951
IGR J19140+0951 (formerly known as IGR J19140+098) was discovered with the
INTEGRAL satellite in March 2003. We report the details of the discovery, using
an improved position for the analysis. We have performed a simultaneous study
of the 5-100 keV JEM-X and ISGRI spectra from which we can distinguish two
different states. From the results of our analysis we propose that IGR
J19140+0951 is a persistent Galactic X-ray binary, probably hosting a neutron
star although a black hole cannot be completely ruled out.Comment: 4 pages, 4 figures. Accepted for publication in A&A
Scattering of second sound waves by quantum vorticity
A new method of detection and measurement of quantum vorticity by scattering
second sound off quantized vortices in superfluid Helium is suggested.
Theoretical calculations of the relative amplitude of the scattered second
sound waves from a single quantum vortex, a vortex ring, and bulk vorticity are
presented. The relevant estimates show that an experimental verification of the
method is feasible. Moreover, it can even be used for the detection of a single
quantum vortex.Comment: Latex file, 9 page
An Improved Interactive Streaming Algorithm for the Distinct Elements Problem
The exact computation of the number of distinct elements (frequency moment
) is a fundamental problem in the study of data streaming algorithms. We
denote the length of the stream by where each symbol is drawn from a
universe of size . While it is well known that the moments can
be approximated by efficient streaming algorithms, it is easy to see that exact
computation of requires space . In previous work, Cormode
et al. therefore considered a model where the data stream is also processed by
a powerful helper, who provides an interactive proof of the result. They gave
such protocols with a polylogarithmic number of rounds of communication between
helper and verifier for all functions in NC. This number of rounds
can quickly make such
protocols impractical.
Cormode et al. also gave a protocol with rounds for the exact
computation of where the space complexity is but the total communication . They managed to give round protocols with
complexity for many other interesting problems
including , Inner product, and Range-sum, but computing exactly with
polylogarithmic space and communication and rounds remained open.
In this work, we give a streaming interactive protocol with rounds
for exact computation of using bits of space and the communication is . The update
time of the verifier per symbol received is .Comment: Submitted to ICALP 201
Temperature characterization of deep and shallow defect centers of low noise silicon JFETs
Abstract We have selected different low noise JFET processes that have shown outstanding dynamic and noise performance at both room temperature and low temperatures. We have studied JFETs made with a process optimized for cryogenic operation, testing several devices of varying capacitance. For most of them, we have been able to detect the presence of shallow individual traps at low temperature which create low frequency (LF) GenerationâRecombination (GâR) noise. For one device type no evidence of traps has been observed at the optimum temperature of operation (around 100 K). It had a very small residual LF noise. This device has been cooled down to 14 K. From below 100 K down to 14 K the noise was observed to increase due to GâR noise originating from donor atoms (dopants) inside the channel. A very simple theoretical interpretation confirms the nature of GâR noise from these very shallow trapping centers. We also studied devices from a process optimized for room temperature operation and found noise corresponding to the presence of a single deep level trap. Even for this circumstance the theory was experimentally confirmed. The measurement approach we used allowed us to achieve a very high accuracy in the modeling of the measured GâR noise. The ratio of the density of the atoms responsible for GâR noise above the doping concentration, NT/Nd, has been verified with a sensitivity around 10â7
Food insecurity among people with severe mental disorder in a rural Ethiopian setting: a comparative, population-based study
Aim.
In low-income African countries, ensuring food security for all segments of the population is a high priority. Mental illness is associated consistently with poverty, but there is little evidence regarding the association with food insecurity. The aim of this study was to compare the levels of food insecurity in people with severe mental disorders (SMD) with the general population in a rural African setting with a high burden of food insecurity.
Method.
Households of 292 community-ascertained people with a specialist-confirmed diagnosis of SMD (including schizophrenia and bipolar disorder) were compared with 284 households without a person with SMD in a rural district in south Ethiopia. At the time of the study, no mental health services were available within the district. Food insecurity was measured using a validated version of the Household Food Insecurity Access Scale. Disability was measured using the World Health Organisation Disability Assessment Schedule 2.0.
Result.
Severe household food insecurity was reported by 32.5% of people with SMD and 15.9% of respondents from comparison households: adjusted odds ratio 2.82 (95% confidence interval 1.62 to 4.91). Higher annual income was associated independently with lower odds of severe food insecurity. When total disability scores were added into the model, the association between SMD and food insecurity became non-significant, indicating a possible mediating role of disability.
Conclusion.
Efforts to alleviate food insecurity need to target people with SMD as a vulnerable group. Addressing the disabling effects of SMD would also be expected to reduce food insecurity. Access to mental health care integrated into primary care is being expanded in this district as part of the Programme for Improving Mental health carE (PRIME). The impact of treatment on disability and food insecurity will be evaluated
Extensive reduction of surface UV radiation since 1750 in world's populated regions
Human activity influences a wide range of components that affect the surface UV radiation levels, among them ozone at high latitudes. We calculate the effect of human-induced changes in the surface erythemally weighted ultra-violet radiation (UV-E) since 1750. We compare results from a radiative transfer model to surface UV-E radiation for year 2000 derived by satellite observations (from Total Ozone Mapping Spectroradiometer) and to ground based measurements at 14 sites. The model correlates well with the observations; the correlation coefficients are 0.97 and 0.98 for satellite and ground based measurements, respectively. In addition to the effect of changes in ozone, we also investigate the effect of changes in SO<sub>2</sub>, NO<sub>2</sub>, the direct and indirect effects of aerosols, albedo changes and aviation-induced contrails and cirrus. The results show an increase of surface UV-E in polar regions, most strongly in the Southern Hemisphere. Furthermore, our study also shows an extensive surface UV-E reduction over most land areas; a reduction up to 20% since 1750 is found in some industrialized regions. This reduction in UV-E over the industrial period is particularly large in highly populated regions
Critical properties and finite--size estimates for the depinning transition of directed random polymers
We consider models of directed random polymers interacting with a defect
line, which are known to undergo a pinning/depinning (or
localization/delocalization) phase transition. We are interested in critical
properties and we prove, in particular, finite--size upper bounds on the order
parameter (the {\em contact fraction}) in a window around the critical point,
shrinking with the system size. Moreover, we derive a new inequality relating
the free energy \tf and an annealed exponent which describes extreme
fluctuations of the polymer in the localized region. For the particular case of
a --dimensional interface wetting model, we show that this implies an
inequality between the critical exponents which govern the divergence of the
disorder--averaged correlation length and of the typical one. Our results are
based on on the recently proven smoothness property of the depinning transition
in presence of quenched disorder and on concentration of measure ideas.Comment: 15 pages, 1 figure; accepted for publication on J. Stat. Phy
Reoptimization of Some Maximum Weight Induced Hereditary Subgraph Problems
The reoptimization issue studied in this paper can be described as follows: given an instance I of some problem Î , an optimal solution OPT for Î in I and an instance IâČ resulting from a local perturbation of I that consists of insertions or removals of a small number of data, we wish to use OPT in order to solve Î in I', either optimally or by guaranteeing an approximation ratio better than that guaranteed by an ex nihilo computation and with running time better than that needed for such a computation. We use this setting in order to study weighted versions of several representatives of a broad class of problems known in the literature as maximum induced hereditary subgraph problems. The main problems studied are max independent set, max k-colorable subgraph and max split subgraph under vertex insertions and deletion
- âŠ