38,976 research outputs found

    Search for magnetic fields in particle-accelerating colliding-wind binaries

    Full text link
    Some colliding-wind massive binaries, called particle-accelerating colliding-wind binaries (PACWB), exhibit synchrotron radio emission, which is assumed to be generated by a stellar magnetic field. However, no measurement of magnetic fields in these stars has ever been performed. We aim at quantifying the possible stellar magnetic fields present in PACWB to provide constraints for models. We gathered 21 high-resolution spectropolarimetric observations of 9 PACWB available in the ESPaDOnS, Narval and HarpsPol archives. We analysed these observations with the Least Squares Deconvolution method. We separated the binary spectral components when possible. No magnetic signature is detected in any of the 9 PACWB stars and all longitudinal field measurements are compatible with 0 G. We derived the upper field strength of a possible field that could have remained hidden in the noise of the data. While the data are not very constraining for some stars, for several stars we could derive an upper limit of the polar field strength of the order of 200 G. We can therefore exclude the presence of strong or moderate stellar magnetic fields in PACWB, typical of the ones present in magnetic massive stars. Weak magnetic fields could however be present in these objects. These observational results provide the first quantitative constraints for future models of PACWB.Comment: Accepted in A&

    A binary signature in the non-thermal radio-emitter Cyg OB2 #9

    Full text link
    Aims: Non-thermal radio emission associated with massive stars is believed to arise from a wind-wind collision in a binary system. However, the evidence of binarity is still lacking in some cases, notably Cyg OB2 #9 Methods: For several years, we have been monitoring this heavily-reddened star from various observatories. This campaign allowed us to probe variations both on short and long timescales and constitutes the first in-depth study of the visible spectrum of this object. Results: Our observations provide the very first direct evidence of a companion in Cyg OB2 #9, confirming the theoretical wind-wind collision scenario. These data suggest a highly eccentric orbit with a period of a few years, compatible with the 2yr-timescale measured in the radio range. In addition, the signature of the wind-wind collision is very likely reflected in the behaviour of some emission lines.Comment: accepted by A&A, 4 p, 3figure

    A spectroscopic investigation of the O-type star population in four Cygnus OB associations. II. Determination of the fundamental parameters

    Full text link
    Aims. Having established the binary status of nineteen O-type stars located in four Cygnus OB associations, we now determine their fundamental parameters to constrain their properties and their evolutionary status. We also investigate their surface nitrogen abundances, which we compare with other results from the literature obtained for galactic O-type stars. Methods. Using optical spectra collected for each object in our sample and some UV data from the archives, we apply the CMFGEN atmosphere code to determine their main properties. For the binary systems, we have disentangled the components to obtain their individual spectra and investigate them as if they were single stars. Results. We find that the distances of several presumably single O-type stars seem poorly constrained because their luminosities are not in agreement with the "standard" luminosities of stars with similar spectral types. The ages of these O-type stars are all less than 7 Myrs. Therefore, the ages of these stars agree with those, quoted in the literature, of the four associations, except for CygOB8 for which the stars seem older than the association itself. However, we point out that the distance of certain stars is debatable relative to values found in the literature. The N content of these stars put in perspective with N contents of several other galactic O-type stars seems to draw the same five groups as found in the "Hunter" diagram for the O and B-type stars in the LMC even though their locations are obviously different. We determine mass-loss rates for several objects from the Halpha line and UV spectra. Finally, we confirm the "mass discrepancy" especially for O stars with masses smaller than 30 Msun. .Comment: 11 pages, and 26 pages of Appendix. A&A in pres

    Quantification and localization of the liquid zone of partially remelted M2 tool steel using X-ray microtomography and scanning electron microscopy

    Get PDF
    The authors warmly thank Luc Morhain and Marc Wary (Arts et Métiers ParisTech CER Metz) for their technical support.Thixoforming of steels poses challenges due to the high temperatures involved and the lack of understanding of thermomechanical behavior. The volume fractions of the liquid and solid phases in the semi-solid state are the most important parameters for such a form-ing process, as they affect the viscosity and hence the flow behavior of the material. Two-dimensional observations might not always be sufficient, as the size distribution and the connectivity of phases cannot be obtained from associated measurements, which can only be determined by three-dimensional (3-D) investigation. This paper presents the first application of high-energy X-ray microtomography to the microstructure of steel in the semi-solid state. The microstructure of M2 high-speed tool steel was studied in both as-received and heated-and-quenched states. From the reconstructed images, 3-D information could be obtained and was compared with scanning elec-tron microscopy and energy dispersive spectrometry observations. The volume fraction and the location of liquid phase in the semi-solid state were determined in particular, and the continuous solid skeleton was investigated

    Resonant enhancements of high-order harmonic generation

    Get PDF
    Solving the one-dimensional time-dependent Schr\"odinger equation for simple model potentials, we investigate resonance-enhanced high-order harmonic generation, with emphasis on the physical mechanism of the enhancement. By truncating a long-range potential, we investigate the significance of the long-range tail, the Rydberg series, and the existence of highly excited states for the enhancements in question. We conclude that the channel closings typical of a short-range or zero-range potential are capable of generating essentially the same effects.Comment: 7 pages revtex, 4 figures (ps files

    Effect of the Centrifugal Force on Domain Chaos in Rayleigh-B\'enard convection

    Get PDF
    Experiments and simulations from a variety of sample sizes indicated that the centrifugal force significantly affects rotating Rayleigh-B\'enard convection-patterns. In a large-aspect-ratio sample, we observed a hybrid state consisting of domain chaos close to the sample center, surrounded by an annulus of nearly-stationary nearly-radial rolls populated by occasional defects reminiscent of undulation chaos. Although the Coriolis force is responsible for domain chaos, by comparing experiment and simulation we show that the centrifugal force is responsible for the radial rolls. Furthermore, simulations of the Boussinesq equations for smaller aspect ratios neglecting the centrifugal force yielded a domain precession-frequency fϵμf\sim\epsilon^\mu with μ1\mu\simeq1 as predicted by the amplitude-equation model for domain chaos, but contradicted by previous experiment. Additionally the simulations gave a domain size that was larger than in the experiment. When the centrifugal force was included in the simulation, μ\mu and the domain size closely agreed with experiment.Comment: 8 pages, 11 figure

    Evidence for a physically bound third component in HD 150136

    Get PDF
    Context. HD150136 is one of the nearest systems harbouring an O3 star. Although this system was for a long time considered as binary, more recent investigations have suggested the possible existence of a third component. Aims. We present a detailed analysis of HD 150136 to confirm the triple nature of this system. In addition, we investigate the physical properties of the individual components of this system. Methods. We analysed high-resolution, high signal-to-noise data collected through multi-epoch runs spread over ten years. We applied a disentangling program to refine the radial velocities and to obtain the individual spectra of each star. With the radial velocities, we computed the orbital solution of the inner system, and we describe the main properties of the orbit of the outer star such as the preliminary mass ratio, the eccentricity, and the orbital-period range. With the individual spectra, we determined the stellar parameters of each star by means of the CMFGEN atmosphere code. Results. We offer clear evidence that HD 150136 is a triple system composed of an O3V((f\ast))-3.5V((f+)), an O5.5-6V((f)), and an O6.5-7V((f)) star. The three stars are between 0-3 Myr old. We derive dynamical masses of about 64, 40, and 35 Msun for the primary, the secondary and the third components by assuming an inclination of 49{\deg}. It currently corresponds to one of the most massive systems in our galaxy. The third star moves with a period in the range of 2950 to 5500 d on an outer orbit with an eccentricity of at least 0.3. This discovery makes HD 150136 the first confirmed triple system with an O3 primary star. However, because of the long orbital period, our dataset is not sufficient to constrain the orbital solution of the tertiary component with high accuracy.Comment: 13 pages, 11 figures, accepted at A&

    Sinusoidal nanotextures for light management in silicon thin film solar cells

    Get PDF
    Recent progresses in liquid phase crystallization enabled the fabrication of thin wafer quality crystalline silicon layers on low cost glass substrates enabling conversion efficiencies up to 12.1 . Because of its indirect band gap, a thin silicon absorber layer demands for efficient measures for light management. However, the combination of high quality crystalline silicon and light trapping structures is still a critical issue. Here, we implement hexagonal 750 nm pitched sinusoidal and pillar shaped nanostructures at the sun facing glass silicon interface into 10 m thin liquid phase crystallized silicon thin film solar cell devices on glass. Both structures are experimentally studied regarding their optical and optoelectronic properties. Reflection losses are reduced over the entire wavelength range outperforming state of the art anti reflective planar layer systems. In case of the smooth sinusoidal nanostructures these optical achievements are accompanied by an excellent electronic material quality of the silicon absorber layer enabling open circuit voltages above 600 mV and solar cell device performances comparable to the planar reference device. For wavelengths smaller than 400 nm and higher than 700 nm optical achievements are translated into an enhanced quantum efficiency of the solar cell devices. Therefore, sinusoidal nanotextures are a well balanced compromise of optical enhancement and maintained high electronic silicon material quality which opens a promising route for future optimizations in solar cell designs for silicon thin film solar cells on glas
    corecore