43,971 research outputs found

    Approximate solutions for the single soliton in a Skyrmion-type model with a dilaton scalar field

    Full text link
    We consider the analytical properties of the single-soliton solution in a Skyrmion-type Lagrangian that incorporates the scaling properties of quantum chromodynamics (QCD) through the coupling of the chiral field to a scalar field interpreted as a bound state of gluons. The model was proposed in previous works to describe the Goldstone pions in a dense medium, being also useful for studying the properties of nuclear matter and the in-medium properties of mesons and nucleons. Guided by an asymptotic analysis of the Euler-Lagrange equations, we propose approximate analytical representations for the single soliton solution in terms of rational approximants exponentially localized. Following the Pad\'e method, we construct a sequence of approximants from the exact power series solutions near the origin. We find that the convergence of the approximate representations to the numerical solutions is considerably improved by taking the expansion coefficients as free parameters and then minimizing the mass of the Skyrmion using our ans\"atze for the fields. We also perform an analysis of convergence by computation of physical quantities showing that the proposed analytical representations are very useful useful for phenomenological calculations.Comment: 13 pages, 3 eps figures, version to be published in Phys.Rev.

    Exploring degeneracies in modified gravity with weak lensing

    Full text link
    By considering linear-order departures from general relativity, we compute a novel expression for the weak lensing convergence power spectrum under alternative theories of gravity. This comprises an integral over a 'kernel' of general relativistic quantities multiplied by a theory-dependent 'source' term. The clear separation between theory-independent and -dependent terms allows for an explicit understanding of each physical effect introduced by altering the theory of gravity. We take advantage of this to explore the degeneracies between gravitational parameters in weak lensing observations.Comment: 17 pages, 7 figures. v2: Minor changes to match version accepted by PR

    Vector Meson Dominance as a first step in a systematic approximation: the pion vector form factor

    Full text link
    Pade Approximants can be used to go beyond Vector Meson Dominance in a systematic approximation. We illustrate this fact with the case of the pion vector form factor and extract values for the first two coefficients of its Taylor expansion. Pade Approximants are shown to be a useful and simple tool for incorporating high-energy information, allowing an improved determination of these Taylor coefficients.Comment: 13 pages, 7 figure

    Towards understanding Regge trajectories in holographic QCD

    Get PDF
    We reassess a work done by Migdal on the spectrum of low-energy vector mesons in QCD in the light of the AdS-QCD correspondence. Recently, a tantalizing parallelism was suggested between Migdal's work and a family of holographic duals of QCD. Despite the intriguing similarities, both approaches face a major drawback: the spectrum is in conflict with well-tested Regge scaling. However, it has recently been shown that holographic duals can be modified to accomodate Regge behavior. Therefore, it is interesting to understand whether Regge behavior can also be achieved in Migdal's approach. In this paper we investigate this issue. We find that Migdal's approach, which is based on a modified Pade approximant, is closely related to the issue of quark-hadron duality breakdown in QCD.Comment: 17 pages, 1 figure. Typos fixed, references added, improved discussion. Minor changes to match the journal versio

    Integration of crosswind forces into train dynamic modelling

    Get PDF
    In this paper a new method is used to calculate unsteady wind loadings acting on a railway vehicle. The method takes input data from wind tunnel testing or from computational fluid dynamics simulations (one example of each is presented in this article), for aerodynamic force and moment coefficients and combines these with fluctuating wind velocity time histories and train speed to produce wind force time histories on the train. This method is fast and efficient and this has allowed the wind forces to be applied to a vehicle dynamics simulation for a long length of track. Two typical vehicles (one passenger, one freight) have been modelled using the vehicle dynamics simulation package ‘VAMPIRE®’, which allows detailed modelling of the vehicle suspension and wheel—rail contact. The aerodynamic coefficients of the passenger train have been obtained from wind tunnel tests while those of the freight train have been obtained through fluid dynamic computations using large-eddy simulation. Wind loadings were calculated for the same vehicles for a range of average wind speeds and applied to the vehicle models using a user routine within the VAMPIRE package. Track irregularities measured by a track recording coach for a 40 km section of the main line route from London to King's Lynn were used as input to the vehicle simulations. The simulated vehicle behaviour was assessed against two key indicators for derailment; the Y/Q ratio, which is an indicator of wheel climb derailment, and the Δ Q/Q value, which indicates wheel unloading and therefore potential roll over. The results show that vehicle derailment by either indicator is not predicted for either vehicle for any mean wind speed up to 20 m/s (with consequent gusts up to around 30 m/s). At a higher mean wind speed of 25 m/s derailment is predicted for the passenger vehicle and the unladen freight vehicle (but not for the laden freight vehicle)

    Integration of tools for the Design and Assessment of High-Performance, Highly Reliable Computing Systems (DAHPHRS), phase 1

    Get PDF
    Systems for Space Defense Initiative (SDI) space applications typically require both high performance and very high reliability. These requirements present the systems engineer evaluating such systems with the extremely difficult problem of conducting performance and reliability trade-offs over large design spaces. A controlled development process supported by appropriate automated tools must be used to assure that the system will meet design objectives. This report describes an investigation of methods, tools, and techniques necessary to support performance and reliability modeling for SDI systems development. Models of the JPL Hypercubes, the Encore Multimax, and the C.S. Draper Lab Fault-Tolerant Parallel Processor (FTPP) parallel-computing architectures using candidate SDI weapons-to-target assignment algorithms as workloads were built and analyzed as a means of identifying the necessary system models, how the models interact, and what experiments and analyses should be performed. As a result of this effort, weaknesses in the existing methods and tools were revealed and capabilities that will be required for both individual tools and an integrated toolset were identified

    Analysis of the X-Factor and X-Factor stretch during the completion of a golf practice session in low-handicap golfers

    Get PDF
    The X-Factor and X-Factor stretch have been positively correlated with golf long game performance. The aim of this study was to compare the X-Factor, X-Factor stretch and long game performance variables pre and following a golf practice session. A group of male golfers (n = 15, handicap = 3.3 ± 1.7) participated in the laboratory-based-study. Movement and performance variables were collected from five golf swings performed pre and following a golf practice session using a motion capture system and launch monitor respectively. Following the practice session, significant increases were observed in the X-Factor (p = 0.00, d = 0.22) and the X-Factor stretch (p = 0.02, d = 0.25). Specifically, the X-Factor increased from 52.82 ± 5.64 ° to 54.06 ± 5.61 ° following the practice session. The X-Factor stretch increased from 1.54 ± 1.05 ° to 1.90 ± 1.41 ° following the practice session. Significant differences were displayed in club head velocity (p = 0.00, d = 0.35), ball velocity (p = 0.01, d = 0.21) and actual carry distance (p = 0.00, d = 0.29) following the practice session. These findings suggest that performing multiple golf shots is not detrimental in terms of muscular fatigue in the long game performance. In actual fact, the findings demonstrate that performing 100 golf shots increases the X-Factor, X-Factor stretch patterns and performance variables which, in turn, increases long game performance. These findings can help PGA golf Professionals improve teaching practices and formulation of golf programmes and warm-up sessions

    Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations

    Get PDF
    Abstract On 17 March 2013, a large magnetic storm significantly depleted the multi-MeV radiation belt. We present multi-instrument observations from the Van Allen Probes spacecraft Radiation Belt Storm Probe A and Radiation Belt Storm Probe B at ~6 Re in the midnight sector magnetosphere and from ground-based ionospheric sensors during a substorm dipolarization followed by rapid reenergization of multi-MeV electrons. A 50% increase in magnetic field magnitude occurred simultaneously with dramatic increases in 100 keV electron fluxes and a 100 times increase in VLF wave intensity. The 100 keV electrons and intense VLF waves provide a seed population and energy source for subsequent radiation belt enhancements. Highly relativistic (\u3e2 MeV) electron fluxes increased immediately at L* ~ 4.5 and 4.5 MeV flux increased \u3e90 times at L* = 4 over 5 h. Although plasmasphere expansion brings the enhanced radiation belt multi-MeV fluxes inside the plasmasphere several hours postsubstorm, we localize their prompt reenergization during the event to regions outside the plasmasphere. Key Points Substorm dynamics are important for highly relativistic electron energization Cold plasma preconditioning is significant for rapid relativistic energization Relativistic / highly relativistic electron energization can occur in \u3c 5 hrs
    • …
    corecore