241 research outputs found

    Large eddy simulations of solitons colliding with intrusions

    Get PDF
    The dynamics of lock-release Intrusive Gravity Currents (IGCs) generating Internal Solitary Waves (ISWs) are investigated by three-dimensional large eddy simulations. We set the numerical, laboratory-scale domain in order to release a uniform fluid in multi-layer, stratified ambient, exciting pycnocline displacements. By adopting different initial settings, we analyzed the influence of the ambient stratification on both IGCs and ISWs features. We present the main flow dynamics and the time evolution of IGC and ISW front and trough positions, respectively. During the simulations, the ISW is allowed to reach the vertical wall at the end of the domain, and it undergoes reflection. We then analyzed the interaction between the IGC and the reflected ISW: the wave is observed to accelerate as it is pushed upwards by the intrusion, which, in turns, flows below the ISW, decelerating. By analyzing instantaneous velocity fields and flow rates, we found that during this interaction, the ISW increases its celerity in response of the reduced area available for its propagation, partially occupied by the intrusion, and because the velocity field in the IGC interface surroundings acts to facilitate the ISW passage

    Size-frequency distribution of boulders ≥10 m on comet 103P/Hartley 2

    Get PDF
    Aims. We derive the size-frequency distribution of boulders on comet 103P/Hartley 2, which are computed from the images taken by the Deep Impact/HRI-V imaging system. We indicate the possible physical processes that lead to these boulder size distributions. Methods. We used images acquired by the High Resolution Imager-Visible CCD camera on 4 November 2010. Boulders ≥10 m were identified and manually extracted from the datasets with the software ArcGIS. We derived the global size-frequency distribution of the illuminated side of the comet (∼50%) and identified the power-law indexes characterizing the two lobes of 103P. The three-pixel sampling detection, together with the shadowing of the surface, enables unequivocally detection of boulders scattered all over the illuminated surface. Results. We identify 332 boulders ≥10 m on the imaged surface of the comet, with a global number density of nearly 140/km2 and a cumulative size-frequency distribution represented by a power law with index of -2.7 ± 0.2. The two lobes of 103P show similar indexes, i.e., -2.7 ± 0.2 for the bigger lobe (called L1) and -2.6 +0.2/ - 0.5 for the smaller lobe (called L2). The similar power-law indexes and similar maximum boulder sizes derived for the two lobes both point toward a similar fracturing/disintegration phenomena of the boulders as well as similar lifting processes that may occur in L1 and L2. The difference in the number of boulders per km2 between L1 and L2 suggests that the more diffuse H2O sublimation on L1 produce twice the boulders per km2 with respect to those produced on L2 (primary activity CO2 driven). The 103P comet has a lower global power-law index (-2.7 vs. -3.6) with respect to 67P. The global differences between the two comets activities, coupled with a completely different surface geomorphology, make 103P hardly comparable to 67P. A shape distribution analysis of boulders ≥30 m performed on 103P suggests that the cometary boulders show more elongated shapes when compared to collisional laboratory fragments as well as to the boulders present on the surfaces of 25 143 Itokawa and 433 Eros asteroids. Consequently, this supports the interpretation that cometary boulders have different origins with respect to the impact-related asteroidal boulders

    Phobos as a D-type captured asteroid, spectral modeling from 0.25 to 4.0 μm

    Get PDF
    This paper describes the spectral modeling of the surface of Phobos in the wavelength range between 0.25 and 4.0 μm. We use complementary data to cover this spectral range: the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System on board the ESA Rosetta spacecraft) reflectance spectrum that Pajola et al. merged with the VSK-KRFM-ISM (Videospectrometric Camera (VSK)-Combined Radiometer and Photometer for Mars (KRFM)-Imaging Spectrometer for Mars (ISM) on board the USSR Phobos 2 spacecraft) spectra by Murchie & Erard and the IRTF (NASA Infrared Telescope Facility, Hawaii, USA) spectra published by Rivkin et al. The OSIRIS data allow the characterization of an area of Phobos covering from 86.°8 N to 90° S in latitude and from 126° W to 286° W in longitude. This corresponds chiefly to the trailing hemisphere, but with a small sampling of the leading hemisphere as well. We compared the OSIRIS results with the Trojan D-type asteroid 624 Hektor and show that the overall slope and curvature of the two bodies over the common wavelength range are very similar. This favors Phobos being a captured D-type asteroid as previously suggested. We modeled the OSIRIS data using two models, the first one with a composition that includes organic carbonaceous material, serpentine, olivine, and basalt glass, and the second one consisting of Tagish Lake meteorite and magnesium-rich pyroxene glass. The results of these models were extended to longer wavelengths to compare the VSK-KRFM-ISM and IRTF data. The overall shape of the second model spectrum between 0.25 and 4.0 μm shows curvature and an albedo level that match both the OSIRIS and Murchie & Erard data and the Rivkin et al. data much better than the first model. The large interval fit is encouraging and adds weight to this model, making it our most promising fit for Phobos. Since Tagish Lake is commonly used as a spectral analog for D-type asteroids, this provides additional support for compositional similarities between Phobos and D-type asteroids. © 2013. The American Astronomical Society. All rights reserved

    Pre-hibernation performances of the OSIRIS cameras onboard the Rosetta spacecraft

    Get PDF
    Context. The ESA cometary mission Rosetta was launched in 2004. In the past years and until the spacecraft hibernation in June 2011, the two cameras of the OSIRIS imaging system (Narrow Angle and Wide Angle Camera, NAC and WAC) observed many different sources. On 20 January 2014 the spacecraft successfully exited hibernation to start observing the primary scientific target of the mission, comet 67P/Churyumov-Gerasimenko. Aims. A study of the past performances of the cameras is now mandatory to be able to determine whether the system has been stable through the time and to derive, if necessary, additional analysis methods for the future precise calibration of the cometary data. Methods. The instrumental responses and filter passbands were used to estimate the efficiency of the system. A comparison with acquired images of specific calibration stars was made, and a refined photometric calibration was computed, both for the absolute flux and for the reflectivity of small bodies of the solar system. Results. We found a stability of the instrumental performances within ±1.5% from 2007 to 2010, with no evidence of an aging effect on the optics or detectors. The efficiency of the instrumentation is found to be as expected in the visible range, but lower than expected in the UV and IR range. A photometric calibration implementation was discussed for the two cameras. Conclusions. The calibration derived from pre-hibernation phases of the mission will be checked as soon as possible after the awakening of OSIRIS and will be continuously monitored until the end of the mission in December 2015. A list of additional calibration sources has been determined that are to be observed during the forthcoming phases of the mission to ensure a better coverage across the wavelength range of the cameras and to study the possible dust contamination of the optics

    Spectrophotometric investigation of Phobos with the Rosetta OSIRIS-NAC camera and implications for its collisional capture

    Get PDF
    TheMartian satellite Phobos has been observed on 2007 February 24 and 25, during the pre- and post-Mars closest approach (CA) of the ESA Rosetta spacecraftMars swing-by. The goal of the observations was the determination of the surface composition of different areas of Phobos, in order to obtain new clues regarding its nature and origin. Near-ultraviolet, visible and near-infrared (263.5-992.0 nm) images of Phobos's surface were acquired using the Narrow Angle Camera of the OSIRIS instrument onboard Rosetta. The six multi-wavelength sets of observations allowed a spectrophotometric characterization of different areas of the satellite, belonging respectively to the leading and trailing hemisphere of the anti-Mars hemisphere, and also of a section of its sub-Mars hemisphere. The pre-CA spectrophotometric data obtained with a phase angle of 19° have a spectral trend consistent within the error bars with those of unresolved/disc-integrated measurements present in the literature. In addition, we detect an absorption band centred at 950 nm, which is consistent with the presence of pyroxene. The post-CA observations cover from NUV to NIR a portion of the surface (0° to 43°E of longitude) never studied before. The reflectance measured on our data does not fit with the previous spectrophotometry above 650 nm. This difference can be due to two reasons. First, the OSIRIS observed area in this observation phase is completely different with respect to the other local specific spectra and hence the spectrum may be different. Secondly, due to the totally different observation geometry (the phase angle ranges from 137° to 140°), the differences of spectral slope can be due to phase reddening. The comparison of our reflectance spectra, both pre-and post-CA, with those of D-type asteroids shows that the spectra of Phobos are all redder than the mean D-type spectrum, but within the spectral dispersion of other D-types. To complement this result, we performed an investigation of the conditions needed to collisionally capture Phobos in a way similar to that proposed for the irregular satellites of the giant planets. Once put in the context of the current understanding of the evolution of the early Solar system, the coupled observational and dynamical results we obtained strongly argue for an early capture of Phobos, likely immediately after the formation of Mars. © 2012 The Authors

    A Gradient-Based Approach for Breast DCE-MRI Analysis

    Get PDF
    Breast cancer is the main cause of female malignancy worldwide. Effective early detection by imaging studies remains critical to decrease mortality rates, particularly in women at high risk for developing breast cancer. Breast Magnetic Resonance Imaging (MRI) is a common diagnostic tool in the management of breast diseases, especially for high-risk women. However, during this examination, both normal and abnormal breast tissues enhance after contrast material administration. Specifically, the normal breast tissue enhancement is known as background parenchymal enhancement: it may represent breast activity and depends on several factors, varying in degree and distribution in different patients as well as in the same patient over time. While a light degree of normal breast tissue enhancement generally causes no interpretative difficulties, a higher degree may cause difficulty to detect and classify breast lesions at Magnetic Resonance Imaging even for experienced radiologists. In this work, we intend to investigate the exploitation of some statistical measurements to automatically characterize the enhancement trend of the whole breast area in both normal and abnormal tissues independently from the presence of a background parenchymal enhancement thus to provide a diagnostic support tool for radiologists in the MRI analysis

    Prenatal tobacco smoke exposure increases hospitalizations for bronchiolitis in infants

    Get PDF
    BACKGROUND: Tobacco smoke exposure (TSE) is a worldwide health problem and it is considered a risk factor for pregnant women's and children's health, particularly for respiratory morbidity during the first year of life. Few significant birth cohort studies on the effect of prenatal TSE via passive and active maternal smoking on the development of severe bronchiolitis in early childhood have been carried out worldwide. METHODS: From November 2009 to December 2012, newborns born at ≥ 33 weeks of gestational age (wGA) were recruited in a longitudinal multi-center cohort study in Italy to investigate the effects of prenatal and postnatal TSE, among other risk factors, on bronchiolitis hospitalization and/or death during the first year of life. RESULTS: Two thousand two hundred ten newborns enrolled at birth were followed-up during their first year of life. Of these, 120 (5.4%) were hospitalized for bronchiolitis. No enrolled infants died during the study period. Prenatal passive TSE and maternal active smoking of more than 15 cigarettes/daily are associated to a significant increase of the risk of offspring children hospitalization for bronchiolitis, with an adjHR of 3.5 (CI 1.5-8.1) and of 1.7 (CI 1.1-2.6) respectively. CONCLUSIONS: These results confirm the detrimental effects of passive TSE and active heavy smoke during pregnancy for infants' respiratory health, since the exposure significantly increases the risk of hospitalization for bronchiolitis in the first year of lif

    Risk factors for bronchiolitis hospitalization during the first year of life in a multicenter Italian birth cohort

    Get PDF
    BACKGROUND: Respiratory Syncytial Virus (RSV) is one of the main causes of respiratory infections during the first year of life. Very premature infants may contract more severe diseases and 'late preterm infants' may also be more susceptible to the infection. The aim of this study is to evaluate the risk factors for hospitalization during the first year of life in children born at different gestational ages in Italy. METHODS: A cohort of 33-34 weeks gestational age (wGA) newborns matched by sex and age with two cohort of newborns born at 35-37 wGA and > 37 wGA were enrolled in this study for a three-year period (2009-2012). Hospitalization for bronchiolitis (ICD-9 code 466.1) during the first year of life was assessed through phone interview at the end of the RSV season (November-March) and at the completion of the first year of life. RESULTS: The study enrolled 2314 newborns, of which 2210 (95.5 %) had a one year follow-up and were included in the analysis; 120 (5.4 %) were hospitalized during the first year of life for bronchiolitis. Children born at 33-34 wGA had a higher hospitalization rate compared to the two other groups. The multivariate analysis carried out on the entire population associated the following factors with higher rates for bronchiolitis hospitalization: male gender; prenatal treatment with corticosteroids; prenatal exposure to maternal smoking; singleton delivery; respiratory diseases in neonatal period; surfactant therapy; lack of breastfeeding; siblings <10 years old; living in crowded conditions and/or in unhealthy households and early exposure to the epidemic RSV season. When analysis was restricted to preterms born at 33-34 wGA the following variables were associated to higher rates of bronchiolitis hospitalization: male gender, prenatal exposure to maternal smoking, neonatal surfactant therapy, having siblings <10 years old, living in crowded conditions and being exposed to epidemic season during the first three months of life. CONCLUSION: Our study identified some prenatal, perinatal and postnatal conditions proving to be relevant and independent risk factors for hospitalization for bronchiolitis during the first year of life. The combination of these factors may lead to consider palivizumab prophylaxis in Italy

    Dancing With Parkinson's Disease: The SI-ROBOTICS Study Protocol

    Get PDF
    Introduction: Parkinson's disease (PD) is one of the most frequent causes of disability among older people, characterized by motor disorders, rigidity, and balance problems. Recently, dance has started to be considered an effective exercise for people with PD. In particular, Irish dancing, along with tango and different forms of modern dance, may be a valid strategy to motivate people with PD to perform physical activity. The present protocol aims to implement and evaluate a rehabilitation program based on a new system called “SI-ROBOTICS,” composed of multiple technological components, such as a social robotic platform embedded with an artificial vision setting, a dance-based game, environmental and wearable sensors, and an advanced AI reasoner module. Methods and Analysis: For this study, 20 patients with PD will be recruited. Sixteen therapy sessions of 50 min will be conducted (two training sessions per week, for 8 weeks), involving two patients at a time. Evaluation will be primarily focused on the acceptability of the SI-ROBOTICS system. Moreover, the analysis of the impact on the patients' functional status, gait, balance, fear of falling, cardio-respiratory performance, motor symptoms related to PD, and quality of life, will be considered as secondary outcomes. The trial will start in November 2021 and is expected to end by April 2022. Discussions: The study aims to propose and evaluate a new approach in PD rehabilitation, focused on the use of Irish dancing, together with a new technological system focused on helping the patient perform the dance steps and on collecting kinematic and performance parameters used both by the physiotherapist (for the evaluation and planning of the subsequent sessions) and by the system (to outline the levels of difficulty of the exercise). Ethics and Dissemination: The study was approved by the Ethics Committee of the IRCCS INRCA. It was recorded in ClinicalTrials.gov on the number NCT05005208. The study findings will be used for publication in peer-reviewed scientific journals and presentations in scientific meetings

    Experimental phase function and degree of linear polarization of cometary dust analogues

    Get PDF
    We present experimental phase function and degree of linear polarization curves for seven samples of cometary dust analogues namely: ground pieces of Allende, DaG521, FRO95002, and FRO99040 meteorites, Mg-rich olivine and pyroxene, and a sample of organic tholins. The experimental curves have been obtained at the IAA Cosmic Dust Laboratory at a wavelength of 520 nm covering a phase angle range from 3 degrees to 175 degrees. We also provide values of the backscattering enhancement for our cometary analogue samples. The final goal of this work is to compare our experimental curves with observational data of comets and asteroids to better constrain the nature of cometary and asteroidal dust grains. All measured phase functions present the typical behaviour for mu m-sized cosmic dust grains. Direct comparison with data provided by the OSIRIS/Rosetta camera for comet 67P/Churyumov-Gerasimenko reveals significant differences and supports the idea of a coma dominated by big chunks, larger than one micrometer. The polarization curves are qualitatively similar to ground-based observations of comets and asteroids. The position of the inversion polarization angle seems to be dependent on the composition of the grains. We find opposite dependence of the maximum of the polarization curve for grains sizes in the Rayleigh-resonance and geometric optics domains, respectively.Peer reviewe
    corecore