91 research outputs found

    Differential Gene Expression at Coral Settlement and Metamorphosis - A Subtractive Hybridization Study

    Get PDF
    A successful metamorphosis from a planktonic larva to a settled polyp, which under favorable conditions will establish a future colony, is critical for the survival of corals. However, in contrast to the situation in other animals, e.g., frogs and insects, little is known about the molecular basis of coral metamorphosis. We have begun to redress this situation with previous microarray studies, but there is still a great deal to learn. In the present paper we have utilized a different technology, subtractive hybridization, to characterize genes differentially expressed across this developmental transition and to compare the success of this method to microarray.\ud \ud Methodology/Principal Findings\ud \ud Suppressive subtractive hybridization (SSH) was used to identify two pools of transcripts from the coral, Acropora millepora. One is enriched for transcripts expressed at higher levels at the pre-settlement stage, and the other for transcripts expressed at higher levels at the post-settlement stage. Virtual northern blots were used to demonstrate the efficacy of the subtractive hybridization technique. Both pools contain transcripts coding for proteins in various functional classes but transcriptional regulatory proteins were represented more frequently in the post-settlement pool. Approximately 18% of the transcripts showed no significant similarity to any other sequence on the public databases. Transcripts of particular interest were further characterized by in situ hybridization, which showed that many are regulated spatially as well as temporally. Notably, many transcripts exhibit axially restricted expression patterns that correlate with the pool from which they were isolated. Several transcripts are expressed in patterns consistent with a role in calcification.\ud \ud Conclusions\ud \ud We have characterized over 200 transcripts that are differentially expressed between the planula larva and post-settlement polyp of the coral, Acropora millepora. Sequence, putative function, and in some cases temporal and spatial expression are reported

    Genomic signatures in the coral holobiont reveal host adaptations driven by Holocene climate change and reef specific symbionts

    Get PDF
    Genetic signatures caused by demographic and adaptive processes during past climatic shifts can inform predictions of species’ responses to anthropogenic climate change. To identify these signatures in Acropora tenuis, a reef-building coral threatened by global warming, we first assembled the genome from long reads and then used shallow whole-genome resequencing of 150 colonies from the central inshore Great Barrier Reef to inform population genomic analyses. We identify population structure in the host that reflects a Pleistocene split, whereas photosymbiont differences between reefs most likely reflect contemporary (Holocene) conditions. Signatures of selection in the host were associated with genes linked to diverse processes including osmotic regulation, skeletal development, and the establishment and maintenance of symbiosis. Our results suggest that adaptation to post-glacial climate change in A. tenuis has involved selection on many genes, while differences in symbiont specificity between reefs appear to be unrelated to host population structure

    Does the type of silvicultural practice influence spruce budworm defoliation of seedlings?

    Get PDF
    Spruce budworm (Choristoneura fumiferana (Clem)) is the main defoliator in the boreal forest of North America, and its outbreaks have major ecological and economic consequences and represent a challenge for forest management. Numerous studies have addressed the effects of this defoliator on mature trees, whereas the effects of spruce budworm on regeneration remain elusive. Furthermore, intensive exploitation practices during the last decades have left a large area of the Canadian boreal forest in an early development stage. In this context, it becomes vital to understand those factors affecting the severity of spruce budworm-related defoliation on regeneration. Here, we determine the defoliation severity of black spruce and balsam fir seedlings in both mature pure black spruce and black spruce-balsam fir stands subjected to two different silvicultural treatments (clear-cutting and partial cutting). Defoliation intensity varied between stand types, silvicultural treatments, species, and height classes. Seedlings in black spruce-balsam fir stands experienced twice the defoliation of those in pure black spruce stands (black spruce seedlings 10% vs. 23%; balsam fir seedlings 29% vs. 47%, respectively). Harvesting methods also influenced seedling defoliation. Under clear-cutting, black spruce seedlings (24%) were three times as defoliated as black spruce seedlings in partial cutting stands (8%), whereas balsam fir seedlings in clear-cutting plots experienced twice the defoliation (42%) of balsam fir seedlings in partial cutting plots (20%). The level of defoliation also increased with seedling height. This study will help silvicultural strategies adapt to the effects of natural disturbance regimes. As the intensity and severity of defoliator outbreaks are expected to increase under climate change, these results will help guide forest management strategies to select harvesting methods that will limit the effects of defoliation on conifer regeneration

    Gene Flow and Genetic Diversity of a Broadcast-Spawning Coral in Northern Peripheral Populations

    Get PDF
    Recently, reef-building coral populations have been decreasing worldwide due to various disturbances. Population genetic studies are helpful for estimating the genetic connectivity among populations of marine sessile organisms with metapopulation structures such as corals. Moreover, the relationship between latitude and genetic diversity is informative when evaluating the fragility of populations. In this study, using highly variable markers, we examined the population genetics of the broadcast-spawning coral Acropora digitifera at 19 sites in seven regions along the 1,000 km long island chain of Nansei Islands, Japan. This area includes both subtropical and temperate habitats. Thus, the coral populations around the Nansei Islands in Japan are northern peripheral populations that would be subjected to environmental stresses different from those in tropical areas. The existence of high genetic connectivity across this large geographic area was suggested for all sites (FST≀0.033) although small but significant genetic differentiation was detected among populations in geographically close sites and regions. In addition, A. digitifera appears to be distributed throughout the Nansei Islands without losing genetic diversity. Therefore, A. digitifera populations in the Nansei Islands may be able to recover relatively rapidly even when high disturbances of coral communities occur locally if populations on other reefs are properly maintained

    The venom composition of the parasitic wasp Chelonus inanitus resolved by combined expressed sequence tags analysis and proteomic approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parasitic wasps constitute one of the largest group of venomous animals. Although some physiological effects of their venoms are well documented, relatively little is known at the molecular level on the protein composition of these secretions. To identify the majority of the venom proteins of the endoparasitoid wasp <it>Chelonus inanitus </it>(Hymenoptera: Braconidae), we have randomly sequenced 2111 expressed sequence tags (ESTs) from a cDNA library of venom gland. In parallel, proteins from pure venom were separated by gel electrophoresis and individually submitted to a nano-LC-MS/MS analysis allowing comparison of peptides and ESTs sequences.</p> <p>Results</p> <p>About 60% of sequenced ESTs encoded proteins whose presence in venom was attested by mass spectrometry. Most of the remaining ESTs corresponded to gene products likely involved in the transcriptional and translational machinery of venom gland cells. In addition, a small number of transcripts were found to encode proteins that share sequence similarity with well-known venom constituents of social hymenopteran species, such as hyaluronidase-like proteins and an Allergen-5 protein.</p> <p>An overall number of 29 venom proteins could be identified through the combination of ESTs sequencing and proteomic analyses. The most highly redundant set of ESTs encoded a protein that shared sequence similarity with a venom protein of unknown function potentially specific of the <it>Chelonus </it>lineage. Venom components specific to <it>C. inanitus </it>included a C-type lectin domain containing protein, a chemosensory protein-like protein, a protein related to yellow-e3 and ten new proteins which shared no significant sequence similarity with known sequences. In addition, several venom proteins potentially able to interact with chitin were also identified including a chitinase, an imaginal disc growth factor-like protein and two putative mucin-like peritrophins.</p> <p>Conclusions</p> <p>The use of the combined approaches has allowed to discriminate between cellular and truly venom proteins. The venom of <it>C. inanitus </it>appears as a mixture of conserved venom components and of potentially lineage-specific proteins. These new molecular data enrich our knowledge on parasitoid venoms and more generally, might contribute to a better understanding of the evolution and functional diversity of venom proteins within Hymenoptera.</p

    RNA-sequencing elucidates the regulation of behavioural transitions associated with mating in honey bee queens

    Get PDF
    This study was funded by a BBSRC ISIS grant BB/J019453/1, a Royal Holloway Research Strategy Fund Grant, and a Leverhulme Grant F/07537/AK to MJFB. BPO was supported by Australian Research Council Discovery grants DP150100151 and DP120101915. FM was supported by a Marie Curie International Incoming Fellowship FP7-PEOPLE-2013-IIF-625487 to MJFB. We would like to thank Dave Galbraight (Penn State) and Alberto Paccanaro (RHUL) for support with analysis of RNAseq data and four anonymous reviewers for providing thoughtful insights that helped to improve the manuscript.Peer reviewedPublisher PD
    • 

    corecore