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Abstract

Background: The Basic Local Alignment Search Tool (BLAST) is a fundamental program in the life sciences that
searches databases for sequences that are most similar to a query sequence. Currently, the BLAST algorithm utilizes a
query-indexed approach. Although many approaches suggest that sequence search with a database index can
achieve much higher throughput (e.g., BLAT, SSAHA, and CAFE), they cannot deliver the same level of sensitivity as the
query-indexed BLAST, i.e., NCBI BLAST, or they can only support nucleotide sequence search, e.g., MegaBLAST. Due to
different challenges and characteristics between query indexing and database indexing, the existing techniques for
query-indexed search cannot be used into database indexed search.

Results: muBLASTP, a novel database-indexed BLAST for protein sequence search, delivers identical hits returned to
NCBI BLAST. On Intel Haswell multicore CPUs, for a single query, the single-threaded muBLASTP achieves up to a
4.41-fold speedup for alignment stages, and up to a 1.75-fold end-to-end speedup over single-threaded NCBI BLAST.
For a batch of queries, the multithreaded muBLASTP achieves up to a 5.7-fold speedups for alignment stages, and up
to a 4.56-fold end-to-end speedup over multithreaded NCBI BLAST.

Conclusions: With a newly designed index structure for protein database and associated optimizations in BLASTP
algorithm, we re-factored BLASTP algorithm for modern multicore processors that achieves much higher throughput
with acceptable memory footprint for the database index.
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Background
The Basic Local Alignment Search Tool (BLAST) [1] is
a fundamental algorithm in life sciences that compares a
query sequence to a database of sequences, i.e., subject
sequences, to identify sequences that are the most sim-
ilar to the query sequence. The similarities identified by
BLAST can be used to infer functional and structural rela-
tionships between the corresponding biological entities,
for example.
With the advent of next-generation sequencing (NGS),

whether at the outset or downstream from NGS, the
exponential growth of sequence databases is arguably out-
stripping our ability to analyze the data. Specifically, the
increasing demands tomine sequence databases for useful
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information requires substantial computing power. Con-
sequently, significant research effort has been invested
into accelerating the BLAST search algorithm.
Much of this research effort has focused on the paral-

lelization of BLAST on different parallel architectures due
to its compute- and data-intensive nature. NCBI BLAST+
[2] uses pthreads to speed up BLAST on a multicore
CPU. On CPU clusters, TurboBLAST [3], ScalaBLAST
[4], and mpiBLAST [5] have been proposed. To achieve
higher throughput on a per-node basis, BLAST has also
been mapped and optimized onto various accelerators,
including FPGAs [6, 7] and GPUs [8–13]. However, there
are few recent studies that focus on improving the per-
formance of CPU implementations of the widely-used
BLAST algorithm.
Most previous studies [1, 4, 14, 15] adopt query indexing

for sequence search. Query indexing uses a lookup table
to record positions of each word in the input query. These
BLAST algorithms then scan each database sequence to
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find shortmatches, extend thesematches to optimal align-
ments, and then calculate the final similarity scores. In
contrast, other approaches suggest that database indexing
can yield much faster speed than query indexing [16, 17].
Examples of such tools include BLAT [1], SSAHA [18],
MegaBLAST [19], and CAFE [20]. However, these tools
cannot provide the same level of sensitivity as the BLAST
algorithm [17, 21, 22], or support nucleotide sequence
search.
SSAHA and BLAT, for example, are significantly fast for

finding near-identical matches. However, to reduce mem-
ory footprint and search space, both tools build indexes
of non-overlapping words from the database, which leads
to extremely fast search but compromised sensitivity.
More specifically, BLAT, for example, builds database
index with non-overlapping words of length W. With
this approach, the size of database index is significantly
reduced, roughly 1

W the size of an index with overlap-
ping words. However, it requires a matching region of
2W − 1 letters between two sequences for guarantee-
ing to detect it. CAFE is another search tool supporting
protein sequence with database index, but the search
method and scoring phase are substantially changed.
MegaBLAST is the only BLAST variant based on database
index. MegaBLAST accelerates the search for highly sim-
ilar sequences by using a large word size (W = 28) to
reduce the search workload and the memory usage. How-
ever, according to the previous studies [23–25], increas-
ing word size could sacrifice the sensitivity and accu-
racy. Furthermore, MegaBLAST only supports nucleotide
sequences, as the authors claimed that it is very challeng-
ing to support protein sequence based on their design.
Because query indexing usually contains a high percent-

age of empty slots due to few letters in a query, most of
the optimizations of query indexing seek to reduce the
sparsity of the index, e.g., the thick backbone and the
position array in NCBI BLAST [26] and the deterministic
finite automaton (DFA) in FSA-BLAST [14]. For database
indexing, which is full of positions frommillions of subject
sequences from a database (e.g., about 6million sequences
in env_nr database, and over 85 million sequences in nr
database), the major challenges differ substantially from
query indexing. First, the size of the database index can
be prohibitive, especially for the protein database, which
has the increased alphabet and the short word length. Sec-
ond, unlike nucleotide sequence search, protein sequence
search needs to search the hits of similar words, i.e.
the neighboring words rather than merely and exactly
matched words. Including neighboring words increases
the size of the index by one or two orders of magni-
tude. Third, BLAST employs input-sensitive heuristics to
quickly eliminate unnecessary search spaces. However,
this heuristic introduces significant irregularities in mem-
ory access patterns and in control flow paths, e.g. during

two-hit ungapped extension in protein sequence search.
Thus, database indexing that aligns a query to millions of
database sequences instead of a single database sequence
iteratively will suffer more from such irregularities, lead-
ing to serious performance degradation.
To overcome these challenges of database indexing

for protein sequence search, we propose muBLASTP
(i.e., microprocessor-based BLASTP), a novel BLASTP
algorithm that includes an advanced index data struc-
ture for sequences of the database and a set of opti-
mizations for the BLASTP algorithm. The experimental
results show that on a modern multicore architecture,
namely Intel Haswell, for a single query, the single-
threaded muBLASTP can deliver up to a 4.41-fold
speedup for alignment stages, and up to a 1.75-fold end-
to-end speedup over the single-threaded NCBI BLAST.
For a batch of queries, the multithreaded muBLASTP
can achieve up to a 5.7-fold speedup for alignment
stages, and 4.56-fold end-to-end speedup over the mul-
tithreaded NCBI BLAST using 24 threads. The exper-
imental results also shows that on a older generation
multicore architecture, namely Intel Nehalem, for a sin-
gle query, muBLASTP still can deliver up to a 3.8-fold
speedup for alignment stages, and up to a 1.94-fold end-
to-end speedup over the single-threaded NCBI BLAST.
For a batch of queries, the multithreaded muBLASTP
can achieve up to a 8.59-fold speedup for alignment
stages, and 3.85-fold end-to-end speedups over the mul-
tithreaded NCBI BLAST using 12 threads. In addition
to improving performance significantly, muBLASTP pro-
duces identical hit returned to NCBI BLAST, which is
important to the bioinformatics community.

Implementation
Database index
The most challenging component of muBLASTP is the
design of the database index. The index should include the
positions of overlapping words from all subject sequences
of the database. Thus, each position contains the infor-
mation for the sequence id and the offset in the subject
sequence, i.e., subject offset. For the protein sequence
search, the BLASTP algorithm uses the small word size
(W = 3), large alphabet size (22 letters), and neighboring
word comparisons. Because these factors may make the
database index very large, we design our database index
with the following techniques: index blocking, sorting,
and compression.

Index blocking
Figure 1a illustrates the design of index blocking. We
first sort the database by the sequence length; partition
the database into small blocks, where each block has the
same number of letters; and then build the index for each
block separately. In this way, the search algorithm can
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Fig. 1 An example of building a compressed database index. The figure shows the flow from the original database to the compressed index.
a Index blocking phase partitions the sorted database into blocks. b Basic indexing phase generates basic index, which contains positions of all
words in the database. c Index sorting sorts positions of each word by subject offsets. d Index compression-merge merges positions with the same
subject offset. e Index compression-increment done on the merged positions generates increments of subject offsets and sequence ids

go through the index blocks one by one and merge the
high-scoring results of each block in the final stage. Index
blocking can enable the database index to fit into main
memory, especially for large databases whose total index
size exceeds the size of main memory. By configuring
the size of the index block, we can achieve better perfor-
mance. For example, if the index block is small enough to
fit into the CPU cache, the hit detection and gapped and
ungapped extension may achieve better data locality.
Another benefit of using index blocking is to reduce the

index size.Without index blocking and assuming a total of
M sequences in the database, we need log2M bits to store
sequence ids. After dividing the database into N blocks,
each block contains M

N sequences on average. Thus, we
only need log2�M

N � bits to store sequence ids. For exam-
ple, if there are 220 sequences in a database, we need 20
bits to represent the sequence ids. With 28 blocks, if each
block contains 212 sequences, then we only need a max-
imum of 12 bits to store the sequence ids. In addition,
because the number of bits for storing subject offsets is
determined by the longest sequences in each block, after
sorting the database by the sequence length, we can use

fewer bits for subject offsets in the blocks having short and
medium sequences, and more bits only for the blocks hav-
ing extremely long sequences. (This is the reason why we
sort the database by the sequence length).
Furthermore, index blocking allows us to parallelize the

BLASTP algorithm via the mapping of one block to a
thread on a modern multicore processor. For this block-
wise parallel method to achieve the ideal load balance, we
partition index blocks equally to make each block have a
similar number of letters, instead of an identical number
of sequences. To avoid cutting a sequence in the middle, if
this sequence reaches the cap of the block size, we put it
into the next block.
After the database is partitioned into blocks, each block

is indexed individually. As shown in Fig. 1b, the index con-
sists of two parts: the lookup table and the position array.
The lookup table contains aw entries, where a is the alpha-
bet size of amino acids and w is the length of the words.
Each entry contains an offset to the starting position of
the corresponding word. In the position array, a position
of the word consists of the sequence id and the subject off-
set. For protein sequence search, the BLASTP algorithm
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not only searches the hits of exactly matched words, but
it also searches the neighboring words, which are simi-
lar words. The query index used in existing BLAST tools,
e.g., NCBI BLAST, includes the positions of neighbor-
ing words in the lookup table. However, for the database
index in muBLASTP, if we store the positions for the
neighboring words, the total size of the index becomes
extraordinarily large. To address this problem, instead of
storing positions of the neighboring words in the index,
we put the offsets, which point to the neighboring words
of every word, into the lookup table. The hit detection
stage then goes through the positions of neighbors via
the offsets after visiting the current word. In this way, we
use additional stride memory accesses to reduce the total
memory footprint for the index.

Index compression
As shown in Fig. 1b, a specific subject offset for a word
may be repeated in multiple sequences. For example, the
word “ABC” appears in position 0 of sequence 1 and 3. In
light of this repetition, it is possible to compress the index
by optimizing the storage of subject offsets. Next, we sort
the position array by the subject offset to group the same
subject offsets together, as shown in Fig. 1c. After that,
we reduce the index size via merging the repeated sub-
ject offsets: for each word, we store the subject offset and
the number of positions once and store the corresponding
sequence ids sequentially, as shown in Fig. 1d. After the
index merging, we only need a small array for the sorted
subject offsets. Furthermore, because the index is sorted
by subject offsets, instead of storing the absolute value of
subject offsets, we store the incremental subject offsets, as
noted in Fig. 1e, and only use eight (8) bits for the incre-
mental subject offsets. Because the number of positions
for a specific subject offset in one block is generally less
than 256, we can also use eight (8) bits for the number of
positions. Thus, in total, we only need a 16-bit integer to
store a subject offset and its number of positions.
However, this compressed method presents a challenge.

When we use eight (8) bits each for the incremental sub-
ject offset and the number of repeated positions, there
still exist a few cases that the increment subject offsets
or the number of repeated positions is larger than 255.
When such situations are encountered, we split one posi-
tion entry into multiple entries to make the value less than
255. For example, as shown in Fig. 2a, if the increment
subject offset is 300 with 25 positions, then we split the
subject offset into two entries, where the first entry has the
incremental subject offset 255 and the number of repeated
position 0, and the second entry has the incremental sub-
ject offset 45 for the 25 positions. Similarly, as shown in
Fig. 2b, for 300 repeated number of positions, the sub-
ject offset is split into two entries, where the first entry
has the incremental subject offset 2 for 255 positions, but

Fig. 2 An example of resolving overflows in the compressed index.
a Resolving the overflow in the number of positions. b Resolving in
the incremental subject offsets

the second has the incremental subject offset 0 for an
additional 45 positions.

Optimized BLASTP algorithmwith database index
Because the BLASTP search algorithm introduces a more
irregular memory access pattern when using a database
index (rather than a query index), we propose and realize
hit reordering with two-level binning in order to mitigate
the irregular memory access pattern and irregular control
flow, especially for the two-hit ungapped extension.

Hit reorderingwith two-level binning
The two-hit ungapped extension in protein sequence
search requires searching for two-hit pairs, where two hits
are on the same diagonal and close together, to trigger
ungapped extensions. The traditional method, namely the
last-hit array-based method, is commonly used in query-
indexed BLAST. The last-hit array method uses an array
to record the last hit of each diagonal. When a new hit is
detected, the algorithm checks the distance between the
newly found hit and the last hit in the same diagonal of
the last-hit array and updates the last hit with the new hit.
Although the algorithm scans the subject sequence from
the beginning to the end, the diagonal access for a new hit
can be random. The random memory accesses on last-hit
arrays is a critical problem for database-indexed BLAST,
which aligns a query to thousands of subject sequences at
once (rather than aligning a subject sequence to a single
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query, as is done in query-indexed BLAST). Therefore,
to improve the performance of finding two-hit pairs, we
propose a new method that reorders hits with two-level
binning.
As shown in Fig. 3, each bin is mapped to a diagonal

in the first level of binning, and the hits are grouped into
bins by diagonal ids, which are calculated by subject off-
sets minus query offsets. Because query offsets can be
calculated by subject offsets minus diagonal ids, we only
store the sequence ids and subject offsets directly from the
index in order to to minimize memory usage.
After the first-level binning, hits having the same diago-

nal ids are placed into the same bins. However, in each bin,
the hits from different sequences are interleaved. Thus,
we design a second level of binning to reorder the hits by
sequence ids. In contrast to first-level binning, where the
bin id is equal to the diagonal id, second-level binning sets
the bin id to the sequence id. Because we scan the bins of
the first-level binning one by one, the hits in a second-level
bin are sorted naturally by the diagonal id. As shown in
Fig. 4, a hit in the second-level bin contains the subject off-
set and the diagonal id.With the second-level binning, hits

from different sequences are put into different bins and
sorted by diagonal ids. After that, we can quickly detect
two-hit pairs by scanning every second-level bin.
To improve the performance of the two-hit ungapped

extension further, we filter out the hits that cannot
be used to trigger the ungapped extension (instead of
directly putting all the hits into the second-level bins).
This optimization, as captured in Fig. 4, can dramatically
reduce processing overhead by reducing memory usage,
and in turn, improving performance.
Specifically, before writing a hit into a second-level bin,

we check its distance to the last hit in last-hit array. Only
if the distance of the current hit to the last hit satisfies
the distance thresholds, i.e., less than threshold_A and
greater than or equal to overlap, the hit can be put into the
second-level bins. As the number of sequences in a index
block can be adjusted by configuring the size of the index
block, the size of the last-hit array may be small enough
to fit in the cache: not only in the last-level cache (LLC)
on the Haswell CPU in our evaluation but also in the L2
cache. As a result, this optimization to ungapped exten-
sion exhibits excellent data locality when accessing the

Fig. 3 An example of two-level binning without filtering. First-level binning groups hits into bins according to their diagonal ids. Second-level
binning scans hits in the first-level bins bin by bin, and regroups hits into second-level bins by their sequence ids
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Fig. 4 An example of two-level binning with filtering. While scanning hits in first-level bins, we check the distance of each hit to the last hit in the
last-hit array. Only if the distance fits into the threshold, the hit can be put into the second-level bins

reordered hits, thus improving performance. Moreover,
because our optimization filters out the majority of hits,
we also significantly reduce the time spent on memory-
write operations, and in turn, improve performance
further.
If the subject offsets are unsorted in the database index,

as shown in Fig. 5a, the binning method can intro-
duce random memory accesses, which would adversely
impact performance. However, sorting the subject off-
sets in the database index, as shown in in Fig. 1c, can
resolve this problem. Once the index sorting is complete,
as shown in Fig. 5b, both the reads on the database index
and the writes on the first-level binning are contiguous,
thus improving the binning performance via better data
locality.

Optimizations via multithreading
In BLAST algorithm, the query sequence is aligned to
each subject sequence in the database independently and
iteratively. Thus, we can parallelize the BLAST algorithm
withOpenMPmultithreading on themulticore processors
in a compute node, e.g., our pair of 12-core Intel Haswell
CPUs or 24 cores in total. However, achieving robust
scalability on such multicore processors is non-trivial,
particularly for a data-/memory-intensive program like
BLAST, which also introduces irregular memory access
patterns as well as irregular control flow. At a high level,
two major challenges exist for parallelizing BLAST within
a compute node: (1) cache andmemory contention among
threads on different cores and (2) load balancing among
these threads.
Because the alignment on each query is independent,

a straightforward approach to parallelization maps the

alignment of each query to a thread. However, this
approach results in different threads potentially access-
ing different index blocks at the same time. In light of the
limited cache size, this approach results in severe cache
contention between threads. To mitigate this cache con-
tention and maximize cache-sharing across threads, we
exchange execution order, as shown in Algorithm 1. That
is, the first two stages, i.e., hit detection and ungapped
extension, which share the same database index, access
the same database block for all batch query sequences
(from Line 6 to 10). So, we apply the OpenMP pragma on
the inner loop to make different threads process different
input query sequences but on the same index block. Then,
threads on different cores may share the database index
that is loaded into memory and even cache. The aligned
results for each index block are then merged together
for the final alignment with traceback, as shown on
Line 9.
For better load balancing, and in turn, better per-

formance, we leverage the fact that we already have a
sorted database with respect to sequence lengths. We
then partition this database into blocks of equal size and
leverage OpenMP dynamic scheduling.

Discussion
In muBLASTP, we use the composition-based statistics
presented in [27], which is also the default method used
in NCBI BLAST. For other composition-based statistics
methods in NCBI BLAST, such as [28], our current code
base does not support it. We leave this work for the future
versions.
Moreover, the current version of muBLASTP can only

produce the identical results to NCBI BLAST when both
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Algorithm 1Optimized multithreaded muBLASTP
1: function MUBLASTP(Q,S , I)
2: Input: Q: queries, S : subject sequences, I :

database index
3: Output: Print_Result(R)

4: for Index block Ib in I do
5: #pragma omp parallel for schedule(dynamic)
6: forQueryQi inQ do
7: H = Hit_Detection(Ib,Qi)
8: U = Ungapped_Extension(H ,Sb,Qi)
9: Gi = Gi + Gapped_Extension(U ,Sb,Qi)

10: end for
11: end for
12: #pragma omp parallel for schedule(dynamic)
13: forQueryQi inQ do
14: Ri = Traceback(Gi,Qi,S)

15: end for
16: end function

use the default output format (i.e., “pairwise” format)
and the default composition-based statistics method. As a
result, our software can only generate the similar results
to NCBI BLAST if any other parameter is set. In the future
updates of this software, we will add the supports for dif-
ferent formats, makingmuBLASTP to be a comprehensive
tool as NCBI BLAST.

Results
We conducted our experimental evaluations on two dif-
ferent multicore CPU platforms — Haswell platform and
Nehalem platform. Haswell platform consists of two Intel
Haswell Xeon CPUs (E5-2680v3), each of which has 12
cores, 30MB shared L3 cache, and 32KB L1 cache and
256KB L2 private cache on each core. Haswell plat-
form also has 128GB of 2133-MHz DDR main memory.
Nehalem platform consists of two Intel Nehalem Xeon
CPUs (E5645), each of which has 6 cores, 12MB shared L3
cache, and 32KB L1 cache and 256KB L2 private cache on
each core. Nehalem platform also has 24GB of 1600-MHz
DDR main memory. In the experiments, all programs
are compiled by an Intel C/C++ compiler 15.3 with the
compiler option -O3 -fopenmp. In the experiments, all
performance numbers are average values of multiple runs.

Databases Weused three typical protein NCBI databases
from GenBank [29]: uniprot_sprot, env_nr and nr. The
uniprot_sprot database includes approximately 300,000
sequences with a total size of 250 MB and whose median
length and average length are 292 and 355 amino acids
(or letters), respectively. The env_nr database consists of
about 6,000,000 sequences with the total size at 1.7 GB
and whose median length and average length are 177 and

Fig. 5 An example of first-level binning hits with unsorted index and
sorted index. In the example, the hits are generated for the word in
query offset 1. a First-level binning with unsorted index. b First-level
binning with sorted index

197 amino acids (or letters), respectively. The nr database
consists of about 85,000,000 sequences with the total size
at 53 GB and whose median length and average length are
292 and 366 amino acids (or letters), respectively.
Figure 6 shows the distribution of sequence lengths for

the uniprot_sprot, env_nr and nr databases. The sizes of
most sequences from the two databases lie in the range
from 60 amino acids to 1000 amino acids and with only
a handful of sequences longer than 1000 amino acids.
Similar observations are also reported in other studies
[17, 30, 31].

Queries The performance of BLAST depends in part
on the query length. Based on the length distribution
shown in Fig. 6, we evaluated the performance of our
single-thread muBLASTP using three sets of queries with
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Fig. 6 Sequence length distribution of uniprot_sprot, env_nr and nr
database

different lengths — around 100, 500 and 1000 — where
each query set contains 50 queries. For the evaluation
of our multithreaded muBLASTP, we built three query
batches, each containing 100 queries with lengths around
100, 500, and 1000, respectively. In addition, we con-
structed a mixed-length batch of sequences by randomly
selecting 100 queries of arbitrary size in order to evaluate
the real world performance of multithreaded muBLASTP,
especially with respect to scalability and load balancing.
Table 1 captures the statistical profile of query lengths
from ourmixed-length query batches of the uniprot_sprot,
env_nr and nr databases, respectively. The details for
queries are given in Additional file 1.
To align queries with muBLASTP, as the following

commands, we first formatted and sorted the database
using the formatdb and sortdb program, respec-
tively. And then, we indexed the database with a config-
urable block size using the indexdb program, and finally
aligned queries against the database using the mublastp
program.

formatdb <–i database>
sortdb <–i database> <–o sorted_database>
indexdb <–i sorted_database>\

[–s block_size(K letters), default 128]
mublastp <–i query> <–d sorted_database>\

[–t number_of_threads]

In experiments, we compared muBLASTP with NCBI
BLAST (version 2.3.0), which was configured and built
with the following commands.

Table 1 Statistics of query lengths (amino acids) in mixed-length
query batches

Target database Average length Median length Maximum length

uniprot_sprot 333 289 1187

env_nr 191 175 504

nr 312 263 1127

./configure CC=icc CXX=icpc \
—without–gui —without–debug
make
make install

We formatted database, and ran NCBI BLAST with
default parameters, as noted below.

makeblastdb <–in database> <–dbtype prot>
blastp <–query query> <–db database> \

[–num_threads number_of_threads]

As the usage of indexdb program shown above, the
index block size is a configurable variable. By default, its
value is set to 128K amino acids (or letters), making the
index block size around 256 KB and fitting into the L2
cache (256 KB on both Haswell and Nehalem). The rea-
son to set the index block size based on the L2 cache is
that since the L2 cache is private for each core, we could
avoid heavy cache contentions across different threads in
the multithreading mode if the index data can be located
from the L2 cache. If muBLASTP is running with a single
thread, we could increase the index block size and try to
fully utilize the L3 cache as well as the L2 cache. Because
increasing index block size may generate much more hits
in each block, the practical values are 2048K amino acids
(letters) on Haswell and 1024K amino acids on Nehalem
in our experiments for the single thread mode.

Index size
Table 2 shows the raw file (FASTA format) size for the cor-
responding database (“Database” row), the corresponding
index file size with neighboring words (“Index w/ neigh-
bors” row), the index file size without neighboring words
(“Index w/o neighbors” row), and the compressed index
file size (“Compressed index” row). Except “Database”
row, the latter three refer to the different indexing mech-
anisms presented in this paper. According to Table 2,
the database index with neighboring words, when com-
pared to the database index without neighboring words,
can be on the order of 20 times larger. Index com-
pression achieves 1.47-fold compression rate for the
uniprot_sprot database, 1.46-fold compression rate for the
env_nr database, and 1.47-fold compression rate for the
nr database. As a result, the compressed (database) index
for the uniprot_sprot database is 2 times the size of the

Table 2 Size of database and index files in gigabytes (GB)

uniprot_sprot env_nr nr

Database 0.25 1.89 52.4

Index w/ neighbors 18.1 116.6 N/A

Index w/o neighbors 0.76 5.82 122.3

Compressed index 0.51 3.97 83.1
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original database while it is 1.8 times the size of the orig-
inal env_nr database, and it is 1.6 times the size of the
original nr database. Because we embedded the offsets
to neighboring words into the database index, our index
without neighboring words can achieve identical results
as the index with neighboring words but with significantly
less memory usage.

Performance comparison for alignment stages
To evaluate the performance improvement with index
structure and re-factored BLAST algorithm, we used
gettimeofday() functions to measure the execution
time of all four alignment stages for both muBLASTP and
NCBI BLAST without I/O.

Fig. 7 Speedup for alignment stages of single-threaded muBLASTP
over single-threaded NCBI BLAST on Haswell platform with different
query lengths on uniprot_sprot database (a), env_nr database (b) and
nr database (c)

Single-threadedmuBLASTP vs. single-threaded NCBI BLAST
Figure 7 shows the speedups of singled-threaded
muBLASTP over single-threaded NCBI BLAST on
Haswell platform, using different query lengths.
muBLASTP achieves 2.22∼3.35-fold, 1.17∼1.7-fold,
and 1.06∼1.3-fold speedups over NCBI BLAST on
the uniprot_sprot database with queries of length 100,
500, and 1000, respectively. For the env_nr database,
muBLASTP achieves 2.24∼3.51-fold, 1.3∼1.77-fold, and
1.26∼1.39-fold speedups with queries of length 100, 500
and 1000, respectively. For the nr database, muBLASTP
achieves 2.3∼4.41-fold, 1.34∼1.5-fold, and 1.21∼1.26-
fold speedups with queries of length 100, 500 and 1000,
respectively. muBLASTP achieves higher speedup on

Fig. 8 Speedup for alignment stages of single-threaded muBLASTP
over single-threaded NCBI BLAST on Nehalem platform with different
query lengths on uniprot_sprot database (a), env_nr database (b) and
nr database (c)
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Table 3 Speedup for alignment stages of multithreaded muBLASTP over multithreaded NCBI BLAST on Haswell platform (with 24
threads) and Nehalem platform (with 12 threads) with query batches of different query length

Query length

Haswell platform Nehalem platform

uniprot_sprot env_nr nr uniprot_sprot env_nr nr

Aver SD Aver SD Aver SD Aver SD Aver SD Aver SD

100 5.7 0.013 2.67 0.013 1.94 0.021 8.2 0.013 4.52 0.017 8.59 0.015

500 3.22 0.012 1.44 0.012 1.39 0.014 2.25 0.018 1.69 0.018 2.69 0.016

1000 2.85 0.016 1.35 0.013 1.20 0.015 1.76 0.018 1.41 0.016 1.72 0.015

Mixed 4.16 0.013 1.41 0.012 1.49 0.012 2.82 0.018 2.34 0.013 4.1 0.015

Aver is the average value of three runs, and SD is the standard deviation of three runs

the larger database because the BLAST algorithm on a
large database needs to process significantly more hits,
i.e., spending more time on hit detection and two-pair
hit ungapped extension, which are the stages that our
optimizations focus on.
Figure 8 shows the speedups of singled-threaded

muBLASTP over single-threaded NCBI BLAST on
Nehalem platform, using different query lengths.
muBLASTP achieves 1.6∼3.17-fold, 1.33∼1.47-fold,
and 1.09∼1.3-fold speedups over NCBI BLAST on
the uniprot_sprot database with queries of length 100,
500, and 1000, respectively. For the env_nr database,
muBLASTP achieves 2.38∼3.8-fold, 1.3∼1.53-fold, and
1.14∼1.25-fold speedups with queries of length 100, 500
and 1000, respectively. For the nr database, muBLASTP
achieves 2.0∼3.21-fold, 1.1∼1.49-fold, and 1.00∼1.25-
fold speedups with queries of length 100, 500 and 1000,
respectively.

MultithreadedmuBLASTP vs. multithreaded NCBI BLAST
When using query batches of different lengths, Table 3
shows that our multithreaded muBLASTP on Haswell
platform achieves up to a 5.7-fold speedup over mul-
tithreaded NCBI BLAST when using the uniprot_sprot
database, up to a 2.67-fold speedup when using the env_nr
database, and up to a 1.94-fold speedup when using the nr
database.
Table 3 shows that our multithreaded muBLASTP on

Nehalem platform achieves up to a 8.2-fold speedup
over multithreaded NCBI BLAST when using the

uniprot_sprot database, up to a 4.52-fold speedup when
using the env_nr database, and up to a 8.59-fold
speedup when using the nr database. In this case,
muBLASTP achieves much higher speedups on the
smaller uniprot_sprot database, which indicates that
muBLASTP delivers better scalability than NCBI BLAST
on smaller databases.
We also tested muBLASTP performance with query

batches of mixed lengths. Table 3 shows that on Haswell
platform muBLASTP achieves a 4.16-fold speedup over
NCBI BLAST on uniprot_sprot database, a 1.41-fold
speedup over NCBI BLAST on env_nr database, and
a 1.49-fold speedup on nr database. Table 3 also
shows that on Nehalem platform muBLASTP achieves a
2.82-fold speedup over NCBI BLAST on uniprot_sprot
database, a 2.34-fold speedup over NCBI BLAST
on env_nr database, and a 4.1-fold speedup on nr
database.

MultithreadedmuBLASTP vs. single-threadedmuBLASTP
We also evaluated parallel efficiency of multithreaded
muBLASTP. Table 4 shows that multithreaded
muBLASTP using 24 threads on Haswell platform can
achieve 19.8∼21.6-fold speedups over single-thread
muBLASTP with query batches of different lengths on
different databases. Table 4 also shows that multithreaded
muBLASTP using 12 threads on Nehalem platform can
achieve 10.7∼11.6-fold speedups over single-thread
muBLASTP with query batches of different lengths on
different databases.

Table 4 Speedup for alignment stages of multithreaded muBLASTP over single-threaded muBLASTP on Haswell platform (with 24
threads) and Nehalem platform (with 12 threads) with query batches of different query length

Query length

Haswell platform Nehalem platform

uniprot_sprot env_nr nr uniprot_sprot env_nr nr

Aver SD Aver SD Aver SD Aver SD Aver SD Aver SD

100 19.8 0.013 20.2 0.016 20.0 0.013 10.7 0.014 11.2 0.012 11.6 0.012

500 20.9 0.022 20.6 0.011 21.4 0.017 10.9 0.012 11.5 0.013 11.5 0.012

1000 21.4 0.013 21.2 0.013 21.5 0.012 10.8 0.012 11.3 0.013 11.6 0.018

Mixed 21.4 0.012 21.5 0.017 21.6 0.013 10.9 0.018 11.3 0.018 11.5 0.015

Aver is the average value of three runs, and SD is the standard deviation of three runs
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End-to-end performance comparison
To evaluate the end-to-end performance of muBLASTP,
we measured the end-to-end execution time of the pro-
gram via Linux time command. To minimize the impacts
disk I/O, we loaded database and index into RAM disk,
i.e., tmpfs, which is a memory based file system for fast
and stable disk I/O.

Single-threadedmuBLASTP vs. single-threaded NCBI BLAST
Figure 9 shows the speedups of singled-threaded
muBLASTP over single-threaded NCBI BLAST on
Haswell platform, using different query lengths.
muBLASTP achieves 1.12∼1.63-fold, 1.22∼1.33-fold,
and 1.01∼1.13-fold speedups over NCBI BLAST on

Fig. 9 End-to-end speedup of single-threaded muBLASTP over single-
threaded NCBI BLAST on Haswell platformwith different query lengths
on uniprot_sprot database (a), env_nr database (b) and nr database (c)

the uniprot_sprot database with queries of length 100,
500, and 1000, respectively. For the env_nr database,
muBLASTP achieves 1.5∼1.75-fold, 1.05∼1.2-fold, and
1.26∼1.39-fold speedups with queries of length 100, 500
and 1000, respectively. For the nr database, muBLASTP
achieves 1.6∼1.74-fold, 1.27∼1.41-fold, and 1.05∼1.17-
fold speedups with queries of length 100, 500 and 1000,
respectively.
Figure 10 shows the speedups of singled-threaded

muBLASTP over single-threaded NCBI BLAST on
Nehalem platform, using different query lengths.
muBLASTP achieves 1.16∼1.89-fold, 1.25∼1.39-fold,
and 1.02∼1.2-fold speedups over NCBI BLAST on
the uniprot_sprot database with queries of length 100,

Fig. 10 End-to-end speedup of single-threaded muBLASTP over
single-threaded NCBI BLAST on Nehalem platform with different
query lengths on uniprot_sprot database (a), env_nr database (b) and
nr database (c)
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Table 5 End-to-end speedup of multithreaded muBLASTP over multithreaded NCBI BLAST on Haswell platform (with 24 threads) and
Nehalem platform (with 12 threads) with query batches of different query length

Query length

Haswell platform Nehalem platform

uniprot_sprot env_nr nr uniprot_sprot env_nr nr

Aver SD Aver SD Aver SD Aver SD Aver SD Aver SD

100 4.56 0.002 2.62 0.008 1.81 0.010 3.85 0.001 2.2 0.002 1.56 0.001

500 2.45 0.005 1.41 0.002 1.35 0.002 1.82 0.002 1.34 0.001 1.17 0.002

1000 2.74 0.003 1.32 0.003 1.19 0.001 1.71 0.002 1.13 0.001 1.05 0.002

Mixed 3.28 0.005 1.38 0.002 1.47 0.002 2.61 0.001 1.61 0.002 1.24 0.002

Aver is the average value of three runs, and SD is the standard deviation of three runs

500, and 1000, respectively. For the env_nr database,
muBLASTP achieves 1.57∼1.94-fold, 1.09∼1.47-fold, and
1.01∼1.16-fold speedups with queries of length 100, 500
and 1000, respectively. For the nr database, muBLASTP
achieves 1.67∼1.87-fold, 1.2∼1.31-fold, and 1.02∼1.09-
fold speedups with queries of length 100, 500 and 1000,
respectively.

MultithreadedmuBLASTP vs. multithreaded NCBI BLAST
When using query batches of different lengths, Table 5
shows that our multithreaded muBLASTP on Haswell
platform achieves up to a 4.56-fold speedup over mul-
tithreaded NCBI BLAST when using the uniprot_sprot
database, up to a 2.62-fold speedup when using the env_nr
database, and up to a 1.81-fold speedup when using the nr
database.
Table 5 shows that our multithreaded muBLASTP on

Nehalem platform achieves up to a 3.85-fold speedup
over multithreaded NCBI BLAST when using the
uniprot_sprot database, up to a 2.2-fold speedup when
using the env_nr database, and up to a 1.56-fold speedup
when using the nr database.
We also tested muBLASTP performance with query

batches of mixed lengths. Table 5 shows that on Haswell
platform muBLASTP achieves a 3.28-fold speedup
over NCBI BLAST on uniprot_sprot database, 1.38-fold
speedup over NCBI BLAST on env_nr database, and a
1.47-fold speedup on nr database. Table 5 shows that
on Nehalem platform muBLASTP achieves a 2.61-fold
speedup over NCBI BLAST on uniprot_sprot database, a

1.61-fold speedup over NCBI BLAST on env_nr database,
and a 1.24-fold speedup on nr database.

MultithreadedmuBLASTP vs. single-threadedmuBLASTP
We also evaluated parallel efficiency of multithreaded
muBLASTP with end-to-end execution time. Table 6
shows that multithreadedmuBLASTP using 24 threads on
Haswell platform can achieve up to a 20.5-fold speedup
over single-thread muBLASTP with query batches of
different lengths on different databases. Table 6 also
shows that multithreadedmuBLASTP using 12 threads on
Nehalem platform can achieve up to a 11.1-fold speedup
over single-thread muBLASTP with query batches of dif-
ferent lengths on different databases.

Conclusions
In this paper, we present muBLASTP, a database-indexed
BLASTP that delivers identical hits returned to NCBI
BLAST for protein sequence search. With our new
index structure for protein databases and associated
optimizations in muBLASTP, we deliver a re-factored
BLASTP algorithm for modern multicore processors that
achieves much higher throughput with acceptable mem-
ory usage for the database index. Those optimizations
and techniques in index structure and BLAST algo-
rithm, such as index compression, sorting index, two-
level binning, etc., are not merely beneficial to database-
indexed search for protein sequence, also can be propa-
gated to nucleotide sequence search and other alignment
algorithms.

Table 6 End-to-end speedup of multithreaded muBLASTP over single-threaded muBLASTP on Haswell platform (with 24 threads) and
Nehalem platform (with 12 threads) with query batches of different query length

Query length

Haswell platform Nehalem platform

uniprot_sprot env_nr nr uniprot_sprot env_nr nr

Aver SD Aver SD Aver SD Aver SD Aver SD Aver SD

100 16.2 0.001 16.8 0.002 17.3 0.003 9.2 0.001 9.9 0.001 6.3 0.003

500 20.4 0.002 20.3 0.002 20.5 0.002 11.1 0.004 10.6 0.003 11.1 0.002

1000 19.4 0.002 19.3 0.001 19.6 0.004 10.7 0.002 10.2 0.002 10.9 0.001

Mixed 19.2 0.001 19.1 0.002 19.3 0.003 10.3 0.002 11.1 0.002 10.4 0.002

Aver is the average value of three runs, and SD is the standard deviation of three runs
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On a modern compute node with a total of 24
Intel Haswell CPU cores, the multithreaded muBLASTP
achieves up to a 5.7-fold speedup for alignment stages, and
up to a 4.56-fold end-to-end speedup over multithreaded
NCBI BLAST. muBLASTP also can achieve significant
speedups on an older generation platform with dual 6
cores Intel Nehalem CPU, where muBLASTP delivers up
to a 8.59-fold speedups for alignment stages, and up to a
3.85-fold end-to-end speedup over multithreaded NCBI
BLAST.
In the future, we plan to extend muBLASTP to many-

core architectures, e.g., Intel Xeon Phi, which currently
contains 60 cores and supports 240 threads. The more
complex cache/memory hierarchy may lead to signif-
icant challenges in achieving high throughput for the
multithreaded BLAST algorithm. In addition, we plan to
integrate our database-indexed BLASTP into mpiBLAST,
thus combining intra-node and inter-node parallelism for
even greater performance benefit on a high-performance
computing cluster.

Availability and requirements
• Project name:muBLASTP
• Project home page: https://github.com/vtsynergy/

muBLASTP
• Operating system(s): UNIX / Linux
• Programming language: C/C++
• License: LGPL v2.1

Additional file

Additional file 1: Tables of information for queries in the experiments. For
each database, there are four tables for queries of length 100, 500, 1000
and mixed. Each table contains 100 queries in total for performance
comparison of multithreading, and first 50 queries for single-threaded
performance comparison. (PDF 75.2 kb)
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