1,585 research outputs found

    Relaxation in the glass-former acetyl salicylic acid studied by deuteron magnetic resonance and dielectric spectroscopy

    Full text link
    Supercooled liquid and glassy acetyl salicylic acid was studied using dielectric spectroscopy and deuteron relaxometry in a wide temperature range. The supercooled liquid is characterized by major deviations from thermally activated behavior. In the glass the secondary relaxation exhibits the typical features of a Johari-Goldstein process. Via measurements of spin-lattice relaxation times the selectively deuterated methyl group was used as a sensitive probe of its local environments. There is a large difference in the mean activation energy in the glass with respect to that in crystalline acetyl salicylic acid. This can be understood by taking into account the broad energy barrier distribution in the glass.Comment: 8 pages, 3 figures, Submitted to Phys. Rev.

    Explicit Formulae Showing the Effects of Texture on Acoustoelastic Coefficients

    Get PDF
    It is well known that crystallographic texture not only modifies the elastic constants of polycrystalline aggregates at (unstressed) natural states but also affects their acoustoelastic coefficients when the aggregates are stressed. While exact knowledge about the effects of texture on acoustoelastic coefficients has hitherto remained wanting, such effects are usually assumed to be negligible and are ignored in practical applications of acoustoelasticity (cf. [1] for example). Concerning this common practice, Thompson et al. [2] have urged caution: Care must be taken when [this] assumption is made since the influence of texture on acoustoelastic constants is stronger than its influence on elastic moduli or velocities

    The mPED randomized controlled clinical trial: applying mobile persuasive technologies to increase physical activity in sedentary women protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the significant health benefits of regular physical activity, approximately half of American adults, particularly women and minorities, do not meet the current physical activity recommendations. Mobile phone technologies are readily available, easily accessible and may provide a potentially powerful tool for delivering physical activity interventions. However, we need to understand how to effectively apply these mobile technologies to increase and maintain physical activity in physically inactive women. The purpose of this paper is to describe the study design and protocol of the mPED (<b>m</b>obile phone based <b>p</b>hysical activity <b>ed</b>ucation) randomized controlled clinical trial that examines the efficacy of a 3-month mobile phone and pedometer based physical activity intervention and compares two different 6-month maintenance interventions.</p> <p>Methods</p> <p>A randomized controlled trial (RCT) with three arms; 1) PLUS (3-month mobile phone and pedometer based physical activity intervention and 6-month mobile phone diary maintenance intervention), 2) REGULAR (3-month mobile phone and pedometer based physical activity intervention and 6-month pedometer maintenance intervention), and 3) CONTROL (pedometer only, but no intervention will be conducted). A total of 192 physically inactive women who meet all inclusion criteria and successfully complete a 3-week run-in will be randomized into one of the three groups. The mobile phone serves as a means of delivering the physical activity intervention, setting individualized weekly physical activity goals, and providing self-monitoring (activity diary), immediate feedback and social support. The mobile phone also functions as a tool for communication and real-time data capture. The primary outcome is objectively measured physical activity.</p> <p>Discussion</p> <p>If efficacy of the intervention with a mobile phone is demonstrated, the results of this RCT will be able to provide new insights for current behavioral sciences and mHealth.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov#:<a href="http://www.clinicaltrials.gov/ct2/show/NCTO1280812">NCTO1280812</a></p

    Nuclear structure of 30S and its implications for nucleosynthesis in classical novae

    Full text link
    The uncertainty in the 29P(p,gamma)30S reaction rate over the temperature range of 0.1 - 1.3 GK was previously determined to span ~4 orders of magnitude due to the uncertain location of two previously unobserved 3+ and 2+ resonances in the 4.7 - 4.8 MeV excitation region in 30S. Therefore, the abundances of silicon isotopes synthesized in novae, which are relevant for the identification of presolar grains of putative nova origin, were uncertain by a factor of 3. To investigate the level structure of 30S above the proton threshold (4394.9(7) keV), a charged-particle spectroscopy and an in-beam gamma-ray spectroscopy experiments were performed. Differential cross sections of the 32S(p,t)30S reaction were measured at 34.5 MeV. Distorted wave Born approximation calculations were performed to constrain the spin-parity assignments of the observed levels. An energy level scheme was deduced from gamma-gamma coincidence measurements using the 28Si(3He,n-gamma)30S reaction. Spin-parity assignments based on measurements of gamma-ray angular distributions and gamma-gamma directional correlation from oriented nuclei were made for most of the observed levels of 30S. As a result, the resonance energies corresponding to the excited states in 4.5 MeV - 6 MeV region, including the two astrophysically important states predicted previously, are measured with significantly better precision than before. The uncertainty in the rate of the 29P(p,gamma)30S reaction is substantially reduced over the temperature range of interest. Finally, the influence of this rate on the abundance ratios of silicon isotopes synthesized in novae are obtained via 1D hydrodynamic nova simulations.Comment: 22 pages, 12 figure

    Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant

    Get PDF
    © Gramazio et al.; licensee BioMed Central. 2014. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated

    Absolute electron and positron fluxes from PAMELA/Fermi and Dark Matter

    Full text link
    We extract the positron and electron fluxes in the energy range 10 - 100 GeV by combining the recent data from PAMELA and Fermi LAT. The {\it absolute positron and electron} fluxes thus obtained are found to obey the power laws: E2.65E^{-2.65} and E3.06E^{-3.06} respectively, which can be confirmed by the upcoming data from PAMELA. The positron flux appears to indicate an excess at energies E\gsim 50 GeV even if the uncertainty in the secondary positron flux is added to the Galactic positron background. This leaves enough motivation for considering new physics, such as annihilation or decay of dark matter, as the origin of positron excess in the cosmic rays.Comment: Accepted by JCA

    Isotope effects in underdoped cuprate superconductors: a quantum phenomenon

    Full text link
    We show that the unusual doping dependence of the isotope effects on transition temperature and zero temperature in - plane penetration depth naturally follows from the doping driven 3D-2D crossover, the 2D quantum superconductor to insulator transition (QSI) in the underdoped limit and the change of the relative doping concentration upon isotope substitution. Close to the QSI transition both, the isotope coefficient of transition temperature and penetration depth approach the coefficient of the relative dopant concentration, and its divergence sets the scale. These predictions are fully consistent with the experimental data and imply that close to the underdoped limit the unusual isotope effect on transition temperature and penetration depth uncovers critical phenomena associated with the quantum superconductor to insulator transition in two dimensions.Comment: 6 pages, 3 figure
    corecore