2,982 research outputs found

    Multi-frequency fine resolution imaging radar instrumentation and data acquisition

    Get PDF
    Development of a dual polarized L-band radar imaging system to be used in conjunction with the present dual polarized X-band radar is described. The technique used called for heterodyning the transmitted frequency from X-band to L-band and again heterodyning the received L-band signals back to X-band for amplification, detection, and recording

    Blubber Transciptome Response to Acute Stress Axis Activation Involves Transient Charges in Adipogenesis and Lipolysis in Fast-Adapted Marine Mammal

    Get PDF
    Stress can compromise an animal\u27s ability to conserve metabolic stores and participate in energy-demanding activities that are critical for fitness. Understanding how wild animals, especially those already experiencing physiological extremes (e.g. fasting), regulate stress responses is critical for evaluating the impacts of anthropogenic disturbance on physiology and fitness, key challenges for conservation. However, studies of stress in wildlife are often limited to baseline endocrine measurements and few have investigated stress effects in fasting-adapted species. We examined downstream molecular consequences of hypothalamic-pituitary-adrenal (HPA) axis activation by exogenous adrenocorticotropic hormone (ACTH) in blubber of northern elephant seals due to the ease of blubber sampling and its key role in metabolic regulation in marine mammals. We report the first phocid blubber transcriptome produced by RNAseq, containing over 140,000 annotated transcripts, including metabolic and adipocytokine genes of interest. The acute response of blubber to stress axis activation, measured 2 hours after ACTH administration, involved highly specific, transient (lasting \u3c24 \u3ehours) induction of gene networks that promote lipolysis and adipogenesis in mammalian adipocytes. Differentially expressed genes included key adipogenesis factors which can be used as blubber-specific markers of acute stress in marine mammals of concern for which sampling of other tissues is not possible

    Using observed incidence to calibrate the transmission level of a mathematical model for Plasmodium vivax dynamics including case management and importation

    Get PDF
    In this work, we present a simple and flexible model for Plasmodium vivax dynamics which can be easily combined with routinely collected data on local and imported case counts to quantify transmission intensity and simulate control strategies. This model extends the model from White et al. (2016) by including case management interventions targeting liver-stage or blood-stage parasites, as well as imported infections. The endemic steady state of the model is used to derive a relationship between the observed incidence and the transmission rate in order to calculate reproduction numbers and simulate intervention scenarios. To illustrate its potential applications, the model is used to calculate local reproduction numbers in Panama and identify areas of sustained malaria transmission that should be targeted by control interventions

    Multi-channel R-matrix analysis of CNO cycle reactions

    Get PDF
    The CNO cycle is the main process for hydrogen burning in stars somewhat more massive than the Sun. The reaction cross sections at Gamow energies are typically in the femto to pico-barn range and are consequently very difficult to measure experimentally. The CNO reaction rates are based on extrapolations of experimental data from higher energies. We are developing a multi-channel R-matrix code (AZURE) to provide a new and more comprehensive tool for fitting experimental data and making extrapolations to lower energies in all reaction and scattering channels. The 14N(p,γ )15O reaction is the slowest reaction of the CNO cycle and thus it determines the energy production rate of CNO burning. Furthermore, this reaction plays an important role in the determination of Globular Cluster age, since the position of the turnoff point, at which the GC stars escape from the Main Sequence, is powered by the onset of the CNO burning, whose bottleneck is the 14N(p, γ )15O. We have made a reanalysis of the most recent experimental data on the ground state and the 6.18 MeV transitions. The ratio of the cross sections of the 15N(p, γ )16O and 15N(p,α)12C reactions determines how much catalytic material passes to higher CNO cycles and has an effect on the production of heavier elements, particularly 16O and 17O. Simultaneous analysis of both reactions for all channels suggests that the ratio σγ/σα is smaller than previously reported

    The Single-Particle Structure of Neutron-Rich Nuclei of Astrophysical Interest at the Ornl Hribf

    Full text link
    The rapid nuetron-capture process (r process) produces roughly half of the elements heavier than iron. The path and abundances produced are uncertain, however, because of the lack of nuclear strucure information on important neutron-rich nuclei. We are studying nuclei on or near the r-process path via single-nucleon transfer reactions on neutron-rich radioactive beams at ORNL's Holifield Radioactive Ion Beam Facility (HRIBF). Owing to the difficulties in studying these reactions in inverse kinematics, a variety of experimental approaches are being developed. We present the experimental methods and initial results.Comment: Proceedings of the Third International Conference on Fission and Properties of Neutron-Rich Nucle
    corecore