4,404 research outputs found

    On the perturbative expansion of boundary reflection factors of the supersymmetric sinh-Gordon model

    Full text link
    The supersymmetric sinh-Gordon model on a half-line with integrable boundary conditions is considered perturbatively to verify conjectured exact reflection factors to one loop order. Propagators for the boson and fermion fields restricted to a half-line contain several novel features and are developed as prerequisites for the calculations.Comment: 19 pages, 2 figure

    Adding integrable defects to the Boussinesq equation

    Full text link
    The purpose of this paper is to extend the store of models able to support integrable defects by investigating the two-dimensional Boussinesq nonlinear wave equation. As has been previously noted in many examples, insisting that a defect contributes to energy and momentum to ensure their conservation, despite the presence of discontinuities and the explicit breaking of translation invariance, leads to sewing conditions relating the two fields and their derivatives on either side of the defect. The manner in which several types of soliton solutions to the Boussinesq equation are affected by the defect is explored and reveals new effects that have not been observed in other integrable systems, such as the possibility of a soliton reflecting from a defect or of a defect decaying into one or two solitons.Comment: 28 pages, 9 figure

    Integrable defects at junctions within a network

    Get PDF
    The purpose of this article is to explore the properties of integrable, purely transmitting, defects placed at the junctions of several one-dimensional domains within a network. The defect sewing conditions turn out to be quite restrictive—for example, requiring the number of domains meeting at a junction to be even—and there is a clear distinction between the behaviour of conformal and massive integrable models. The ideas are mainly developed within classical field theory and illustrated using a variety of field theory models defined on the branches of the network, including both linear and nonlinear examples

    Type II defects revisited

    Get PDF
    Energy and momentum conservation in the context of a type II, purely transmitting, defect, within a single scalar relativistic two-dimensional field theory, places a severe constraint not only on the nature of the defect but also on the potentials for the scalar fields to either side of it. The constraint is of an unfamiliar type since it requires the Poisson Bracket of the defect contributions to energy and momentum with respect to the defect discontinuity and its conjugate to be balanced by the potential difference across the defect. It is shown that the only solutions to the constraint correspond to the known integrable field theories

    Supersymmetric D-brane Bound States with B-field and Higher Dimensional Instantons on Noncommutative Geometry

    Get PDF
    We classify supersymmetric D0-Dp bound states with a non-zero B-field by considering T-dualities of intersecting branes at angles. Especially, we find that the D0-D8 system with the B-field preserves 1/16, 1/8 and 3/16 of supercharges if the B-field satisfies the ``(anti-)self-dual'' condition in dimension eight. The D0-branes in this system are described by eight dimensional instantons on non-commutative R^8. We also discuss the extended ADHM construction of the eight-dimensional instantons and its deformation by the B-field. The modified ADHM equations admit a sort of the `fuzzy sphere' (embeddings of SU(2)) solution.Comment: 20 pages, LaTeX file, typos corrected and references adde

    Interplay between Zamolodchikov-Faddeev and Reflection-Transmission algebras

    Full text link
    We show that a suitable coset algebra, constructed in terms of an extension of the Zamolodchikov-Faddeev algebra, is homomorphic to the Reflection-Transmission algebra, as it appears in the study of integrable systems with impurity.Comment: 8 pages; a misprint in eq. (2.14) and (2.15) has been correcte

    Saharan dust events at the Jungfraujoch: detection by wavelength dependence of the single scattering albedo and first climatology analysis

    Get PDF
    International audienceScattering and absorption coefficients have been measured continuously at several wavelengths since March 2001 at the high altitude site Jungfraujoch (3580ma.s.l.). From these data, the wavelength dependences of the Ångström exponent and particularly of the single scattering albedo are determined. While the exponent of the single scattering albedo usually increases with wavelength, it decreases with wavelength during Saharan dust events (SDE) due to the greater size of the mineral aerosol particles and their different chemical composition. This change in the sign of the single scattering exponent turns out to be a sensitive means for detecting Saharan dust events. The occurrence of SDE detected by this new method was confirmed by visual inspection of filter colors and by studying long-range back-trajectories. An examination of SDE over a 22-month period shows that SDE are more frequent during the March-June period as well as during October and November. The trajectory analysis indicated a mean traveling time of 96.5h, with the most important source countries situated in the northern and north-western part of the Saharan desert. Most of the SDE do not lead to a detectable increase of the 48-h total suspended particulate matter (TSP) concentration at the Jungfraujoch. During Saharan dust events, the average contribution of this dust to hourly TSP at the Jungfraujoch is 16µg/m3, which corresponds to an annual mean of 0.8µg/m3 or 24% of TSP

    Gravitating Monopole--Antimonopole Chains and Vortex Rings

    Full text link
    We construct monopole-antimonopole chain and vortex solutions in Yang-Mills-Higgs theory coupled to Einstein gravity. The solutions are static, axially symmetric and asymptotically flat. They are characterized by two integers (m,n) where m is related to the polar angle and n to the azimuthal angle. Solutions with n=1 and n=2 correspond to chains of m monopoles and antimonopoles. Here the Higgs field vanishes at m isolated points along the symmetry axis. Larger values of n give rise to vortex solutions, where the Higgs field vanishes on one or more rings, centered around the symmetry axis. When gravity is coupled to the flat space solutions, a branch of gravitating monopole-antimonopole chain or vortex solutions arises, and merges at a maximal value of the coupling constant with a second branch of solutions. This upper branch has no flat space limit. Instead in the limit of vanishing coupling constant it either connects to a Bartnik-McKinnon or generalized Bartnik-McKinnon solution, or, for m>4, n>4, it connects to a new Einstein-Yang-Mills solution. In this latter case further branches of solutions appear. For small values of the coupling constant on the upper branches, the solutions correspond to composite systems, consisting of a scaled inner Einstein-Yang-Mills solution and an outer Yang-Mills-Higgs solution.Comment: 18 pages, 12 figures, uses revte

    Capturing vertical profiles of aerosols and black carbon over the Indian Ocean using autonomous unmanned aerial vehicles

    No full text
    International audienceMeasurements of the vertical distribution of aerosol properties provide essential information for generating more accurate model estimates of radiative forcing and atmospheric heating rates compared with employing remotely sensed column averaged properties. A month long campaign over the Indian Ocean during March 2006 investigated the interaction of aerosol, clouds, and radiative effects. Routine vertical profiles of aerosol and water vapor were determined using autonomous unmanned aerial vehicles equipped with miniaturized instruments. Comparisons of these airborne instruments with established ground-based instruments and in aircraft-to-aircraft comparisons demonstrated an agreement within 10%. Aerosol absorption optical depths measured directly using the unmanned aircraft differed from columnar AERONET sun-photometer results by only 20%. Measurements of total particle concentration, particle size distributions, aerosol absorption and black carbon concentrations are presented along with the trade wind thermodynamic structure from the surface to 3000 m above sea level. Early March revealed a well-mixed layer up to the cloud base at 500 m above mean seal level (m a.s.l.), followed by a decrease of aerosol concentrations with altitude. The second half of March saw the arrival of a high altitude plume existing above the mixed layer that originated from a continental source and increased aerosol concentrations by more than tenfold, yet the surface air mass showed little change in aerosol concentrations and was still predominantly influenced by marine sources. Black carbon concentrations at 1500 m above sea level increased from 70 ng/mÂł to more than 800 ng/mÂł with the arrival of this polluted plume. The absorption aerosol optical depth increased from as low as 0.005 to as much as 0.035 over the same period. The spectral dependence of the aerosol absorption revealed an absorption Angstrom exponent of 1.0, which is typical of an aerosol with most of its absorption attributed to black carbon and generally indicates the absorbing component originated from fossil fuel sources and other high-temperature combustion sources. The results indicate that surface measurements do not represent the aerosol properties within the elevated layers, especially if these layers are influenced by long range transport

    Monopoles and flux strings from SU(2) adjoint scalars

    Full text link
    We construct, in an SU(2) gauge theory with two adjoint scalars, flux strings with monopoles attached at the ends. One scalar breaks SU(2) to U(1) and produces monopoles, the other then breaks the U(1) and produces strings. Dualizing, we write the theory in terms of effective string variables and show that the flux in the string is exactly saturated by the monopoles at the ends.Comment: 12 pp. v2: added several references and reworded some statement
    • …
    corecore