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Abstract
The purpose of this article is to explore the properties of integrable, purely trans-
mitting, defects placed at the junctions of several one-dimensional domains
within a network. The defect sewing conditions turn out to be quite restric-
tive—for example, requiring the number of domains meeting at a junction to
be even—and there is a clear distinction between the behaviour of conformal
and massive integrable models. The ideas are mainly developed within classical
field theory and illustrated using a variety of field theory models defined on the
branches of the network, including both linear and nonlinear examples.

Keywords: integrability, defects, networks, classical field theory

1. Introduction

Defects within (relativistic) integrable field theory models in two dimensions have been studied
for some time from both classical and quantum viewpoints (see, for example [1–19]). In addi-
tion, some non-relativistic systems, for example the nonlinear Schrödinger, KdV and mKdV
equations have been shown to support defects classically [7, 8, 12]. In essence, a defect always
involves a discontinuity of some kind, and in an integrable model experience has shown that
this discontinuity is a ‘jump’ in the field value at a specific point (similar to the discontinuity in
velocity across a shock in a fluid flow), with ‘sewing’ conditions across the defect relating the
fields on either side in such a manner that suitably adjusted energy and momentum conserva-
tion laws are maintained. At least in the relativistic case, presenting the argument the other way
round, the presence of defects that preserve a suitably modified energy and momentum seems
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to require the fields on either side of the defect to be integrable. Characteristically, such defects
break space translation invariance (since they have a specific location) but are purely transmit-
ting. In this sense, they are distinct from ‘delta function’ type discontinuities that typically
involve reflection as well as transmission.

So far, there are basically two types of defect that appear to be integrable, called type
I (where the defect has no degrees of freedom of its own [4, 5]), and type II (where
the defect carries its own degrees of freedom [13, 20]). Both types are needed to discuss
defects within the d(1)

r series of affine Toda field theories [21]. There may be other possi-
bilities, yet to be found, that for example encompass affine Toda field theories based on the
e(1)

r , r = 6, 7, 8 root systems, or extensions to higher dimensional integrable systems such as
the Kadomtsev–Petviashvili equation [22].

In a series of articles [23, 24] it was suggested that nonlinear wave equations can be defined
on graphs or networks by developing suitable junction conditions (but see a much earlier paper
[25], where similar ideas are developed in a different context, and also [26]). In particular, the
sine-Gordon model can be adapted in a manner suitable for a network by allowing the basic
wave speeds to be different within its separated segments [24]. Characteristic of these particular
junction conditions is continuity of the fields as they match at a junction.

In this article, one aim is to demonstrate the existence of defects that join just two domains
with different wave speeds. For this to be possible there must be a discontinuity. Another, is to
explore the possibilities for constructing defects at junctions linking more than two domains
while continuing to preserve conserved energy and momentum. One reason for investigating
these features is the similarity the ‘jump’ defects bear to junctions in nerve fibres (synapses),
see [27]; these too represent a discontinuity and are (ideally) purely transmitting. The arti-
cles [28–30] provide detailed discussions of solitons on nerves, though the soliton-supporting
wave equations considered there are not yet known to support defects of the type discussed
here—investigating that is future task. Another reason might be to devise a mechanism for
moving solitons around in two or three dimensions by using junctions joining at least four or
six branches, respectively, which do not split solitons, but act as switches between the various
branches. Because the junctions are defects they can, with sine-Gordon models defined on each
branch, store topological charge as a soliton converts (under certain circumstances [6]) to an
antisoliton, or is removed from the network by being stopped at a junction. In the latter sense,
the present paper might be considered a supplement to the speculative paper [31], which intro-
duced the idea of using a combination of solitons and a defect to construct a model universal
Toffoli gate [32].

2. Integrable defects

In this section integrable defects are reviewed briefly and adapted to join two domains with
different wave speeds. This is a relatively straightforward development that also serves to set
the scene for future sections. Note, in the next subsection the subscripts I and II will be used
to emphasise the focus on ‘type I’ or ‘type II’ defects. However, in the remaining part of the
article it will be made clear which kind of defect or junction is the subject of the investigation
and, as a consequence, these subscripts will be abandoned.

2.1. The formalism

It is useful to begin with a Lagrangian description of a sine-Gordon defect located at x0 joining
two one-dimensional domains (with fields labelled u(x, t), for x < x0 and v(x, t), for x > x0).
Thus:
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L(u, v) = L(u)θ(x0 − x) + LDδ(x − x0) + L(v)θ(x − x0), (2.1)

with

L(u) =
1
2

(u2
t − c2

uu2
x) − m2

u

β2
u

(1 − cos(βuu)),

L(v) =
1
2

(v2
t − c2

vv
2
x ) − m2

v

β2
v

(1 − cos(βvv)), (2.2)

and with the type I or type II defect Lagrangian LD given by

LI =
√

cucvuvt −DI(u, v), LII = (
√

cuu −√
cvv)λt −DII(u, v,λ). (2.3)

In these expressions, subscripts t, x denote derivatives with respect to t and x, and the defect
energy functional E depends only on the fields not their time (or space) derivatives. Because
the media are different for x < x0 and x > x0, in the sense that the wave speeds are cu, cv ,
respectively, it is also necessary to pay attention to the other constants in the Lagrangians that
might be different on either side of the defect. Also, the fields u, v are evaluated at x0 in a
limiting sense,

u(x0, t) = lim
ε→0

u(x0 − ε), v(x0, t) = lim
ε→0

v(x0 + ε),

where ε > 0.
Using these Lagrangians, the sewing conditions across a defect have the form

c2
uux =

√
cucvvt −

∂DI

∂u
, c2

vvx =
√

cucvut +
∂DI

∂v
, (2.4)

for the type I case, and

c2
uux =

√
cuλt −

∂DII

∂u
, c2

vvx =
√

cvλt +
∂DII

∂v
,

√
cuut −

√
cvvt = −∂DII

∂λ
, (2.5)

for type II. The defect contribution in either case will be derived below but the type I case is
provided here as an illustration:

DI(u, v) = κm

(
σ cos

1
2

(βuu + βvv) +
1
σ

cos
1
2

(βuu − βvv)

)
, (2.6)

where σ ≡ exp(−η) is a dimensionless parameter and

mu = mv ≡ m, κ =
cu

β2
u
=

cv
β2
v

. (2.7)

The latter requirement is quite strong and has other consequences.
For future reference, a sine-Gordon field w in a domain with wave speed c satisfies the

following equation of motion

wtt − c2wxx = −m2

β
sin(βw), (2.8)

with a soliton solution given by

eiβw/2 =
1 + iE
1 − iE

, E = eax+bt+d , a =
m cosh θ

c
, b = −m sinh θ. (2.9)
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It is already to be expected from the form of this solution that if a soliton travelling in the
direction of the positive x-axis (ie from x < x0 to x > x0) can be transmitted through a defect
then on each side of the defect, for a successful matching via sewing conditions, the time
dependence of the fields (in a limiting sense from either side of the defect) must be the same
at the defect location, which implies that mu = mv must be a requirement. Indeed, a soliton
transmitted through a type I defect will be given by expressions of this kind valid on either
side of the defect. Thus,

eiβuu/2 =
1 + iEu

1 − iEu
, eiβvv/2 =

1 + izEv

1 − izEv
,

au =
m cosh θ

cu
, av =

m cosh θ
cv

, bu = bv = −m sinh θ, (2.10)

where

z = exp

((
1
cu

− 1
cv

)
mx0 cosh θ

)
coth

(
η − θ

2

)
. (2.11)

If cu = cv the familiar result [6] is recovered but it is interesting to observe that the ‘delay’
when cu �= cv depends on the location of the defect at x = x0. As previously [6], the soliton may
emerge as a soliton if θ < η, or flip to an anti-soliton if θ > η, or be captured by the defect if its
rapidity satisfies θ = η. Note, the soliton speeds in the two regions are not the same: for x < x0

the soliton is travelling at a speed cu tanh θ but for x > x0 its speed is cv tanh θ. If x is replaced
by x − x0 in the expression (2.9), the extra factor in z cancels out though the dependence on
x0 remains explicit in the solution. This was not the case previously when cu = cv .

2.2. Energy

A characteristic of integrable defects is that they are defined by requiring energy–momentum
to be preserved, which generally requires a contribution from the defect itself to both energy
and momentum [4, 5]. While the total contribution of the fields to the energy will be taken to
be

E =

∫ x0

−∞

(
1
2

(u2
t + c2

uu2
x) + U(u)

)
dx +

∫ ∞

x0

(
1
2

(v2
t + c2

vv
2
x ) + V(v)

)
dx

= E(u) + E(v),

the total conserved energy is given by

E = E(u) + D(u, v) + E(v), (2.12)

where D is a functional of the fields defined in a limiting sense, as described above, at the point
x = x0, with U(u) and V(v) the potentials of the integrable models considered on the right and
on the left of the defect, respectively. The sewing conditions (2.4), (2.5) guarantee this quantity
is conserved. For the sine-Gordon model used previously the potentials are:

U(u) =
m2

u

β2
u

(1 − cos(βuu)), V(v) =
m2

v

β2
v

(1 − cos(βvv)). (2.13)

Using the wave equation to either side of the defect it is straightforward to check that

dE
dt

=
[
c2

uuxut

]x0 +
dD
dt

+
[
c2
vvxvt

]
x0
= 0.
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On the other hand, insisting that momentum is also conserved in either context places strong
constraints on the defect contribution D.

2.3. Momentum

To ensure energy and momentum have the same dimensions, consider the pair (E , M) with
M ≡ cP. Then, the total contribution of the fields to the suitably scaled momentum will be
taken to be

M =

∫ x0

−∞
cuutux dx +

∫ ∞

x0

cvvtvx dx.

In a similar manner, the time derivative of the contributions to the total field momentum is
given by

Ṁ =

∫ x0

−∞
(cuutux)tdx +

∫ ∞

x0

(cvvtvx)t dx

=
[cu

2
(u2

t + c2
uu2

x) − U(u)
]x0

+
[cv

2
(v2

t + c2
vv

2
x ) − V(v)

]
x0

, (2.14)

with the same assumption as before. Since space translation is broken explicitly by the defect
the requirement of overall momentum conservation is expected to impose stringent conditions
on the fields. The two cases introduced above will be dealt with separately.

2.3.1. Type I. Using the type I sewing conditions (in this section all fields are evaluated at
x = x0):

Ṁ = −
√

cv
cu
vtDu −

√
cu

cv
utDv +

1
2cu

D2
u −

1
2cv

E2
v − cuU(u) + cvV(v) = −dP

dt
,

where P is related to D and strongly constrained by the following relationships:√
cv
cu
Du = Pv ,

√
cu

cv
Dv = Pu,

1
2cu

D2
u −

1
2cv

D2
v = cuU(u) − cvV(v). (2.15)

The first pair of relations in (2.15) then implies

1
cu
Duu =

1
cv
Dvv

while the second provides a nonlinear constraint on the solutions to this differential equation.
As noted some years ago [5], there are very few solutions that can work, corresponding to
massive free fields, massless free fields, Liouville fields and sine-Gordon fields. In the case
of sine-Gordon, the appropriate solution for D is given in (2.6). Then, the total conserved
momentum is:

M = M(u) + P(u, v) +M(v).

2.3.2. Type II. In this case, it is useful to define a pair of alternative variables at the defect
point:

q =
1
2

(√
cuu −√

cvv
)

, p =
1
2

(√
cuu +

√
cvv

)
, (2.16)

5
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then the defect contribution to the energy–momentum depends on q, p,λ, where λ is the
additional degree of freedom carried by the defect. Requiring the total momentum

M = M(u) + P(λ, p, q) +M(v)

to be conserved requires

Dp = Pλ, Dλ = Pp,
1
2

(
DλPq −DqPλ

)
= cuU − cvV. (2.17)

As noted previously [13], the third of these relations is a Poisson bracket with λ, q as conjugate
variables. It provides a powerful constraint [33] because there is no dependence on λ in the
expression on the right-hand side of (2.17).

2.4. Remarks

It has been found that an energy–momentum preserving defect can be constructed between
sine-Gordon field theories with scalar fields u, v in two different media provided

mu = mv , cu �= cv , βu �= βv ,
cu

β2
u
=

cv
β2
v

. (2.18)

Thus, after quantization (assuming � is universal), the dimensionless quantities defined by the
field theory constants within the two media are given by

cu

�β2
u
=

cv
�β2

v

. (2.19)

Since this is the combination of constants on which the Zamolodchikov S-matrix depends
[34], it appears the two S-matrices should be identical, independently of the medium. This
is something of a special case, of course, required by insisting the media are connected by an
‘integrable’ defect.

Note also that after quantization the mass scales in the different media are not quite the same
since �m/c2 has the dimension of mass and this is not the same in each medium, since cu �= cv .
In similar manner, the mass of a soliton is a classical feature and in the sine-Gordon model it is
proportional to m/cβ2, which is also different in the two media. However, as a consequence of
the second requirement of (2.18) the energy–momentum carried by a soliton of a given rapidity
will be the same on either side of the defect,

(E ,M) =
8cm
β2

(cosh θ,− sinh θ) .

3. Type I junction within a network

In this section, the possibility of constructing a type I defect at a junction is investigated.

3.1. The setting

A defect between two media can be thought of as a two-branch junction and in this section
the aim is to generalise this idea in order to see if multi-branch junctions and defects can
be combined. To begin with, the one-dimensional branches will be considered to meet at the
common point xi = x0, where xi, i = 1, . . . , N, are the spatial variables along the branches.
Since the branches meet at a single point and are otherwise independent, the notation can be

6
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simplified, without causing confusion, by using the generic space variable x along each branch.
In what follows, since only a single junction is considered, x0 = 0 is a convenient choice. Thus,
the total energy and momentum are given by:

E =

N∑
i=1

εi

∫ ∞

0

(
1
2

(u(i)
t )2 +

c2
i

2
(u(i)

x )2 + U(i)

)
dx,

M =

N∑
i=1

εici

∫ ∞

0

(
u(i)

t u(i)
x

)
dx, (3.1)

where εi = ±1, i = 1, . . . , N, is introduced to take into account the sense of integration along
a branch. For example, for two branches (which, as noted above, is a defect), ε1 = −ε2, since
the junction lies at the intersection of [−∞, 0] and [0,∞]). It is also convenient to define two
diagonal matrices c, ε by

c = diag(ci), ε = diag(εi).

The search for junction sewing conditions is then a generalisation of the arguments summarised
in sections 2.2 and 2.3.

First, to conserve energy, it is enough to take junction conditions (at x = 0):

c2
i u(i)

x = εi

⎛
⎝ N∑

j=1

Ai ju
( j)
t − ∂D

∂u(i)

⎞
⎠ , AT = −A, i = 1, . . . , N, (3.2)

where the ‘junction potential D’ is presumed to depend only on the fields, not on their
derivatives. Also, because the fields have been assumed real, the matrix A is also real. Then,

Ė =

N∑
i=1

εic
2
i

[
u(i)

t u(i)
x

]
0
=

⎡
⎣ N∑

i, j=1

u(i)
t Ai ju

( j)
t −

N∑
i=1

u(i)
t

∂D
∂u(i)

⎤
⎦

0

= −dD
dt

. (3.3)

On the other hand, maintaining the conservation of momentum supplies strong constraints, as
before. Using the field equations in each branch, together with (3.2), leads to

Ṁ =

N∑
i=1

εi

⎡
⎣ci

2
u(i)

t u(i)
t +

1
2ci

⎛
⎝ N∑

j,k=1

Ai jAiku( j)
t u(k)

t

− 2
N∑

j=1

Ai ju
( j)
t

∂D
∂u(i)

+
∂D
∂u(i)

∂D
∂u(i)

⎞
⎠− ciU

(i)

⎤
⎦ , (3.4)

where all quantities are evaluated at the junction. Insisting the terms quadratic in field time-
derivatives cancel requires the real antisymmetric matrix A to satisfy a further constraint,
which, in matrix form, is:

εc = Aεc−1A, or (εc−1A)2 = 1, A = −AT . (3.5)

Note, since the determinant of an odd-dimensional antisymmetric matrix is zero, the constraint
(3.5) cannot be satisfied if the junction is joining an odd number of branches. Thus, this scenario

7
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cannot, for example, work when there are three branches. On the other hand, the constraints
might be satisfied if the number of branches is even.

For N = 2, the defect introduced earlier, (3.5) is satisfied by

ε1 = −ε2, A =

(
0

√
c1c2a

−√
c1c2a 0

)
, a2 = 1. (3.6)

For N = 4, the constraint (3.5) can be solved and the solution depends on two free parameters
and one discrete parameter. It can be written conveniently in the form:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ε1ε2
√

c1c2a ε1ε3
√

c1c3b ε1ε4
√

c1c4c

−ε1ε2
√

c1c2a 0 τ
√

c2c3c −τ
√

c2c4b

−ε1ε3
√

c1c3b −τ
√

c2c3c 0 τ
√

c3c4a

−ε1ε4
√

c1c4c τ
√

c2c4b −τ
√

c3c4a 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.7)

where τ is an arbitrary sign (τ 2 = 1), ε1ε2ε3ε4 = 1, and a, b, c are further constrained by the
quadratic relation

ε1 + ε2a2 + ε3b2 + ε4c2 = 0. (3.8)

Since the product of the ε’s is +1, and a, b, c are real, the only possibility is that two ε’s are
positive and the other two are negative. Thus the constraint (3.8) is a hyperbolic quadratic
form reducing the number of free parameters in the matrix A from three to two. Alternative
expressions for matrices of this type will be given in section 3.2.

Requiring the terms linear in the field time-derivatives in (3.4) to be a total time derivative
requires in turn:

N∑
i=1

εic
−1
i

∂D
∂u(i)

Ai j =
∂P
∂u( j)

, (3.9)

and removing the term that contains no time-derivatives of the fields requires

N∑
i=1

(
1
2
εic

−1
i

∂D
∂u(i)

∂D
∂u(i)

− εiciU
(i)

)
= 0. (3.10)

Equations (3.9) and (3.10) are generalisations of the type I defect equations (2.15).
As a consequence of (3.9) and the antisymmetry of A, it follows that

N∑
i=1

εic
−1
i

∂2P
∂u(i)∂u(i)

= 0. (3.11)

As a further consequence of (3.9) and (3.5)

∂D
∂u(i)

=
N∑

j=1

∂P
∂u( j)

ε jc
−1
j A ji, (3.12)

8
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and hence,

N∑
i=1

εic
−1
i

∂2D
∂u(i)∂u(i)

= 0. (3.13)

It is tempting to try to write D and P as sums of exponentials of the form eαu, where
α · u ≡

∑
i αiu(i), for suitably chosen vectors α. However, in view of the relationships between

P , and D expressed by equations (3.12) and (3.9), it is clear that α must be an eigenvector of
the matrix Aεc−1. Because of the relations (3.5) the matrix Aεc−1 has two eigenvalues ±1,
each with a two-dimensional eigenspace. Moreover, a pair of vectors α, β in either one of
the eigenspaces have the property that αTεc−1β = 0, which, in turn, automatically implies
equations (3.11) and (3.13).

However, it does not seem generally possible to select a suitable set of eigenvectors in order
to satisfy (3.10) while allowing nonlinear integrable wave equations (such as sine-Gordon)
on all four legs meeting at the junction. A closer look into this possibility will be provided
in section 3.3. However, exceptions to this are the special cases where the four-point junction
really consists of pairs of legs with one incoming and one outgoing leg in each pair. In essence,
this happens when A corresponds to a direct sum of N = 2 cases. Even with a fixed set of
epsilons (for example ε1 = ε3 = −1 = −ε2 = −ε4), there are two possibilities since the first
branch could be paired with the second (b = c = 0 in A) or fourth (a = b = 0 in A) and the third
branch then paired, respectively, with the fourth or second branches. In that sense, a junction
could behave as a switch. The number of branches meeting at this type of junction is always
even so this idea generalises allowing branches to be paired in a variety of ways by choosing
the parameters in A suitably.

An interesting feature is the possibility of moving solitons around on a two-dimensional
lattice network (using N = 4 junctions), or on a three-dimensional lattice (using N = 6
junctions).

3.2. Free fields at a type I junction

In order to give a few more details it is useful to consider the simplest (non-conformal) situation
where the network supports a collection of massive free fields. Then it is possible to go further
with the analysis.

The contributions to energy and momentum at the defect are given by quadratic expressions
of the form

D =
1
2

N∑
i, j=1

di ju
(i)u( j), P =

1
2

N∑
i, j=1

pi ju
(i)u( j), (3.14)

where the two expressions are linked by (3.12) and constrained by (3.11) and (3.13). Hence,
in matrix notation

p = dεc−1A, tr(εc−1d) = 0 = tr(εc−1 p).

In fact, the latter two conditions are a consequence of the former using the facts that both p
and d are symmetric matrices while A is antisymmetric. For example,

9
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tr(εc−1p) = tr(εc−1dεc−1A) = tr(ATc−1εdTc−1ε) = −tr(εc−1dεc−1A) = −tr(εc−1 p),

which implies tr(εc−1 p) = 0. Note also that because p is symmetric

dεc−1A + Ac−1εd = 0 ⇒ (εc−1d)(εc−1A) + (εc−1A)(εc−1d) = 0. (3.15)

On the other hand, the constraint equation (3.10) states in this case that

dεc−1d = εcm2 or (εc−1d)2 = m2, (3.16)

where m2 is a diagonal matrix whose entries are the free field mass parameters
m2

i , i = 1, . . . , N. As a consequence of (3.15) and (3.16), the mass matrix m2 must commute
with εc−1A. For example, when N = 4, if any two of the parameters a, b, c in the expression
(3.7) for the matrix A are non-zero, this requires that m2 be proportional to the identity matrix,
meaning the four mass parameters are equal.

For N = 2, given the expression for A in (3.6), as already remarked, it is necessary that
m1 = m2 ≡ m. Then, the symmetric matrix d satisfying the equation (3.16) is conveniently
parametrised by introducing a parameter η so that

d = m

(
c1 cosh η

√
c1c2 sinh η√

c1c2 sinh η c2 cosh η

)
.

Then, on setting σ = exp(η) and u(1) ≡ u, u(2) ≡ v, the defect potential (3.14) becomes

D =
mσ

4

(√
c1u +

√
c2v

)2
+

m
4σ

(√
c1u −√

c2v
)2
.

Note, up to a constant this is the quadratic part of (2.6) and there is one free parameter.
For N = 4, the constraints represented by the two conditions (3.15) and (3.16) are compli-

cated. However, by redefining the fields to include a factor
√

ci and scaling the matrix d by the
common mass, the equations to be satisfied are

(εA)2 = 1, (εd)2 = m2, (εd)(εA) + (εA)(εd) = 0. (3.17)

In view of these relationships, it is convenient to set α = εA and mδ = εd so that,

αT = −εαε, δT = εδε, α2 = 1, δ2 = 1, αδ + δα = 0. (3.18)

Then it is helpful to make use of the elements of a real Clifford algebra generated by

γ1 = iσ2 ⊗ σ1, γ2 = σ1 ⊗ 1, γ3 = iσ2 ⊗ σ3, γ4 = σ3 ⊗ 1, (3.19)

where σa, a = 1, 2, 3 are the Pauli sigma matrices. With this choice

{γa, γb} = εab,

where the matrix ε defined above plays the role of a metric, with ε = diag(−1,+1,−1,+1)
= −γ4. Note also that γ2, γ4 are symmetric while γ1, γ3 are skew-symmetric. Then, a solution
is constructed by assembling α and δ out of linear combinations of elements of the Clifford
algebra while respecting (3.18). For example,

α = aγ2 + cγ1γ2γ3γ4, δ = (qγ1 + rγ3 + sγ4), a2 + c2 = 1, s2 − q2 − r2 = 1.

(3.20)

10
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Explicitly, this choice is:

A = εα =

⎛
⎜⎜⎝

0 −a 0 −c
a 0 −c 0
0 c 0 −a
c 0 a 0

⎞
⎟⎟⎠ , d = mεδ = m

⎛
⎜⎜⎝
−s −r 0 −q
−r −s −q 0
0 −q −s r
−q 0 r −s

⎞
⎟⎟⎠ . (3.21)

This solution has three free parameters after taking the two constraints into account.
More generally, as noted previously (τ = ±1 in (3.7)), there are two possibilities for the

matrix α. Thus,

α1 = aγ2 + bγ1γ3γ4 + cγ1γ2γ3γ4, a2 − b2 + c2 = 1;

or,

α2 = aγ1γ3 + bγ1γ4 + cγ3γ4, b2 − a2 + c2 = 1.

For each of these there is a corresponding matrix δ depending on several free parameters. To
see this, it is convenient to write

δ = (u + vγ2 + wγ1γ2γ3γ4)(qγ1 + rγ3 + sγ4), (u2 − v2 − w2)(q2 + r2 − s2) = −1.

(3.22)

Then, the second and fourth equations in the set (3.18) are automatic by construction while
the fifth requires a single additional constraint. Choosing α1 or α2, the additional constraint is
either

aw − bu − cv = 0 or as − br + cq = 0,

respectively. The special case above, given by the expression (3.21), corresponds to u = 1, v =
w = 0 in δ, and b = 0 in α1.

It is now feasible to calculate a transmission matrix corresponding to plane waves on the
four legs taking input data on legs 1, 3 and output data on legs 2, 4, for example, related by
using the sewing conditions implied by (3.2). Written in the present context (3.2) becomes:

ci
√

ciu
(i)
x =

∑
j

(
αi j

√
c ju

( j)
t − mδi j

√
c ju

( j)
)

and the plane waves (anticipating that there is no reflection on legs 1, 3) are represented by

u(i) = u(i)
0 ei(ki x−ωt), ω2 = c2

i k2
i + m2 ≡ κ2 + m2, i = 1, 2, 3, 4.

Thus, the sewing condition can be rewritten as a matrix equation

(iκ+ iωα+ mδ)
√

cu0 ≡ M
√

cu0 = 0, uT
0 = (u(1)

0 , u(2)
0 , u(3)

0 , u(4)
0 ).

It is straightforward to check that M is singular (in fact M2 − 2iκM = 0, which follows directly
from the properties of the matrices α and δ), and then, for the simplest of the examples above
(3.21):(√

c2u(2)
0√

c4u(4)
0

)
=

1
ms − iκ

(
iaω − mr −icω − mq
icω − mq iaω + mr

)(√
c1u(1)

0√
c3u(3)

0

)
≡ T

(√
c1u(1)

0√
c3u(3)

0

)
. (3.23)

11
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Using the constraints and the relationship between κ and ω it is straightforward to check that
TT† = I = T†T. Since the eigenvalues of M are 0, 2iκ, each with multiplicity two, there can
be no reflection along the branches 1 and 3. If there is no incoming wave along branch 3 then
the wave on branch 1 is split typically into a pair of waves along branches 2 and 4. Clearly, in
that case the ratio of the amplitudes of the outgoing waves is given by:∣∣∣c2u(2)

0

∣∣∣2∣∣∣c4u(4)
0

∣∣∣2 =
a2ω2 + m2r2

c2ω2 + m2q2
.

At the pole κ = −ims, the frequency would be given by ω2 = m2(1 − s2). However, the
constraint (3.20) then implies ω2 � 0, meaning there can be no bound state solution.

It is intriguing that a Clifford algebra seems to provide a natural context to capture the details
of this kind of defect.

3.3. Non-linearity at a type I junction

In a situation where the fields are conformal (either massless free or Liouville), there are oppor-
tunities for defects that join free to free, Liouville to Liouville, or free to Liouville [4]. This
means that since it is possible to have a junction with free massive (or massless) fields, it must
be possible to have a junction with an even number of branches supporting Liouville fields.
This is because the massless fields on any branch can be linked by a defect to a Liouville field
at a point on a specific branch very close to a junction.

To explore this situation further, the case N = 4 will be considered when the fields on each
branch are either free massless fields or satisfy the Liouville equation of motion. As in the
previous section, the matrix ε is chosen to be ε = diag(−1,+1,−1,+1), and the matrix A is:

A =

⎛
⎜⎜⎝

0 −a b −c
a 0 −c b
−b c 0 −a
c −b a 0

⎞
⎟⎟⎠ , a2 − b2 + c2 = 1.

For convenience, the fields will be redefined to include a factor
√

ci and the Liouville potential
is taken to be:

U(i) =
1
2

c−1
i l2i e2βiu

(i)
.

General expressions for the potentials D and P are:

D =
∑

k

xk eαk ·u, P =
∑

k

yk eαk ·u, uT = (u(1), u(2), u(3), u(4)),

where xk, yk are constants and αk are unspecified four-components vector defined at the
junction. All these new elements will be constraints by expressions (3.10)–(3.13). Start with
condition (3.12), which implies

HTαk = zkαk, H = εA, zk =
yk

xk
. (3.24)

Note that since H2 = I, the eigenvalues zk are ±1. Then, condition (3.13) translates into

αk · εαk = 0. (3.25)

12
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On the other hand, the quadratic relation (3.10) becomes∑
k,l

xkxl e(αk+αl)·uαl · εαk = 2(−c1U(1) + c2U(2) − c3U(3) + c4U(4)), (3.26)

where the exponentials on the left-hand side, whose coefficients are different form zero, must
reproduce the Liouville potentials. Because αk are eigenvectors of H with eigenvalues ±1, the
condition (3.25) is always satisfied and the expressionαl · εαk are always zero ifαk andαl lay in
the same two-dimensional eigenspace. Then, in order to reproduce the Liouville potentials, the
sum of two eigenvectors belonging to different eigenspeces must be equal to a vector with only
one entry different from zero. In principle, that seems possible. By demanding, for instance,
the field u(1) to be Liouville and the remaining fields free massless, and choosing

αT
1 = β1(1, a,−b, c), αT

2 = β1(1,−a, b,−c),→ (α1 + α2)T = (2β1, 0, 0, 0),

then

α1 · εα2 = −2β2
1, x1x2 =

l21
4β2

1

,

and the potentials D and P are:

D =
l1

2β1
eβu(1)

(
σ1 eβ1(au(2)−bu(3)+cu(4)) +

1
σ

e−β1(au(2)−bu(3)+cu(4))

)
,

P =
l1

2β1
eβu(1)

(
σ1 eβ1(au(2)−bu(3)+cu(4)) − 1

σ
e−β1(au(2)−bu(3)+cu(4))

)
.

On the other hand, by demanding that more than one field is Liouville, additional constraints
on the entries of the matrix H emerge. With Liouville fields in two of the branches, one of the
constants a, b, c is forced to be zero. For instance, setting a = 0, the eigenvectors can be

αT
1 = β4(c,−b, 0, 1), αT

2 = β3(b,−c, 1, 0), αT
3 = β4(−c, b, 0, 1), αT

4 = β3(−b, c, 1, 0).

Then

α1 · εα3 = 2β2
4 , α2 · εα4 = −2β2

3, x1x3 =
l44

4β2
4

, x2x4 =
l43

4β2
3

,

u(3) and u(4) are Liouville and u(1) and u(2) are free massless. The potentials D and P are:

D =
l3

2β3
eβ3u(3)

(
σ3 eβ3(cu(1)−cu(2)) +

1
σ3

e−β3(cu(1)−cu(2))

)

+
l4

2β4
eβ4u(4)

(
σ4 eβ4(cu(1)−bu(2)) +

1
σ4

e−β4(cu(1)−bu(2))

)
,

P =
l3

2β3
eβ3u(3)

(
σ3 eβ3(cu(1)−cu(2)) − 1

σ3
e−β3(cu(1)−cu(2))

)

+
l4

2β4
eβ4u(4)

(
σ4 eβ4(cu(1)−bu(2)) − 1

σ4
e−β4(cu(1)−bu(2))

)
.

Note that in all these examples, all four fields interact at the junction, and such interactions are
controlled by the entries of the H(= εA) matrix. Finally, if all fields are required to be Liouville,

13
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then a second constant in the matrix H has to be set to zero and the remaining one is forced to
be ±1. In essence, the system splits into the sum of two independent sets with two branches
each. As noted earlier in section 3.1, the latter is clearly the only possibility if the Liouville
fields are replaced by sine-Gordon fields. Hence, in either case, the system reduces to two sets
of type I defects.

3.4. Linear Schrödinger equation

A similar analysis can be carried out for a linear Schrödinger equation but there are some
differences. On each leg at a junction, the appropriate equation is

iu(k)
t = −λku(k)

xx , λk > 0, k = 1, 2, . . . , N.

It is found that all λk are forced to be the same, hence it is convenient to scale variables and
take λk = 1, k = 1, 2, . . . , N from the start. Then, the linear sewing conditions, at x = x0,

u(k)
x =

N∑
1

(iAklu
(l)
t + Bklu

(l)), (3.27)

are consistent with (modified) conservation laws for the quantities

N =
∑

k

εk

∫ ∞

x0

ū(k)u(k)dx −
∑

kl

[
ū(k)εkAklu

(l)
]

x0
, (3.28)

E =
∑

k

εk

∫ ∞

x0

ū(k)
x u(k)

x dx +
∑

kl

[
ū(k)εkBklu

(l)
]

x0
, (3.29)

P =
∑

k

εk

∫ ∞

x0

i(ū(k)u(k)
x − ū(k)

x u(k))dx −
∑

kl

[
iū(k)εk(AB − BA)klu

(l)
]

x0
(3.30)

provided the matrices A, B satisfy

A† = εAε, B† = εBε, A2 = 0, B2 = 0, AB + BA = −1. (3.31)

The case N = 2 was considered previously as a special case of a defect inserted in the non-
linear Schrödinger equation [7]. To be explicit, as a straightforward example for N = 2, it is
convenient to take ε = −σ3, and

A =
1

2α
(iσ2 − σ3), B =

α

2
(iσ2 + σ3),

where α is a real free parameter. More generally, the constraints on the matrices A and B can
be solved by setting

A = iα1σ1 + iα2σ2 + α3σ3, B = iβ1σ1 + iβ2σ2 + β3σ3,

α2
3 = α2

1 + α2
2, β2

3 = β2
1 + β2

2 , α1β1 + α2β2 − α3β3 =
1
2

, (3.32)

where αi, βi, i = 1, 2, 3 are real parameters. This means the general solution to the constraints
for N = 2 has three real free parameters. To make these explicit, the constraints (3.32) can be
solved conveniently by setting

α1 = α3 sin θ, α2 = α3 cos θ, β1 = β3 sinφ, β2 = β3 cosφ,
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α3 =
1

2α

(
sin

(
θ − φ

2

))−1

, β3 = −α

2

(
sin

(
θ − φ

2

))−1

, (3.33)

where θ − φ is not zero or a multiple of 2π. The simpler case above, with just one param-
eter, corresponds to θ = π,φ = 0. With this parametrisation, the transmission factor for a
monochromatic wave is:

T(k,α, θ,φ) = −e−iθ

(
k − α ei(θ−φ)/2

k − α e−i(θ−φ)/2

)
. (3.34)

If N = 3 then, as before, a direct calculation reveals there is no solution to the constraints. On
the other hand, for the case N = 4, it is useful to take advantage of the Clifford algebra defined
previously in (3.19), with ε ≡ γ4, and put

A = a1γ1 + ia2γ2 + a3γ3 + a4γ4 + ia5γ1γ2γ3γ4,

B = b1γ1 + ib2γ2 + b3γ3 + b4γ4 + ib5γ1γ2γ3γ4,

where all coefficients are real. Then the constraints (3.31) are satisfied provided

a2
1 + a2

2 + a2
3 − a2

4 + a2
5 = 0, b2

1 + b2
2 + b2

3 − b2
4 + b2

5 = 0,

a1b1 + a2b2 + a3b3 − a4b4 + a5b5 =
1
2
. (3.35)

Here, there are ten real parameters with just three real constraints that need to be satisfied.
Again, it is noteworthy not only that a Clifford algebra provides a natural setting but also the
constraints are a pair of light cones in a five-dimensional Minkowski space with signature
(1, 1, 1,−1, 1) (with the labelling used above).

4. Type II junctions in a network

In this section the feasibility of a type II junction is explored, which means additional degrees
of freedom are allowed at the junction.

4.1. The setting

Conservation of energy and momentum is examined afresh in appendix A and an alternative set
of conditions are found. For this section, the starting point is provided by the sewing conditions
(A.5)–(A.7) with A = Ã = B = 0. In other words, (3.2) is replaced by:

c2
i u(i)

x = εi

⎛
⎝ n∑

j=1

λ( j)
t − ∂D

∂u(i)

⎞
⎠ , i = 1, . . . , n, (4.1)

c̃2
k ũ(k)

x = ε̃k

⎛
⎝ n∑

j=1

C̃k jλ
( j)
t − ∂D

∂ũ(k)

⎞
⎠ , k = 1, . . . , N − n, (4.2)

u(i)
t +

N−n∑
k=1

ũ(k)
t C̃ki = − ∂D

∂λ(i)
, i = 1, . . . , n, (4.3)
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where u(i) are n fields, ũ(k) are (N − n) fields and λ(i) are n auxiliary fields defined only at the
junction. Hence, C̃ is an ((N − n) × n) matrix, which satisfies the following conditions

εc−1 + C̃T ε̃c̃−1C̃ = 0, (4.4)

and

ε̃c̃ + C̃εcC̃T = 0. (4.5)

The conservation of the scaled momentum implies

Ṁ = X + Y = −dP
dt

, (4.6)

where

X =

n∑
i=1

(
εi

2
ci
−1

(
∂D
∂u(i)

)2

+
1
2
εici

(
∂D
∂λ(i)

)2

− εiciU
(i)

)

+

N−n∑
k=1

(
ε̃k

2
c̃k

−1

(
∂D
∂ũ(k)

)2

− ε̃kc̃kŨ(k)

)
,

and

Y = −
n∑

j=1

N−n∑
k=1

(
λ( j)

t

(
C̃T ε̃c̃−1

)
jk

∂D
∂ũ(k)

+ λ( j)
t

(
εc−1

)
jk

× ∂D
∂u(k)

− ũ( j)
t

(
C̃εc

)
jk

∂D
∂λ(k)

)
.

In order to deal with the constraints imposed by the conservation of the scaled momentum, it
is useful to perform a change of variables. Expression (4.3) suggests setting

q(i) = u(i) +

N−n∑
k=1

ũ(k)C̃ki, with q(i)
t = − ∂D

∂λ(i)
, i = 1, . . . , n. (4.7)

In addition,

p(i) =

n∑
j=1

u( j)F ji +

N−n∑
k=1

ũ(k)F̃ki, i = 1, . . . , n, (4.8)

where F, F̃ are matrices of dimensions (n × n) and ((N − n) × n), respectively. In order to apply
such a change of variables, it is necessary to assume that the matrices involved are invertible,
which forces n = N/2. Hence, the number of branches is even and the number of auxiliary
fields is half the total number of branches meeting at the junction. Then, using the properties
(4.4) and forcing the coefficient of the terms quadratic in the derivative of D with respect to
the auxiliary fields to be zero, it is found that F̃ = −C̃F and (4.6) become

n∑
i=1

(
∂D
∂q(i)

∂P
∂λ(i)

− ∂P
∂q(i)

∂D
∂λ(i)

− εiciU
(i) − ε̃ic̃iŨ

(i)

)
= 0, (4.9)

16



J. Phys. A: Math. Theor. 53 (2020) 484001 E Corrigan and C Zambon

n∑
j=1

(
2εc−1F

)
i j

∂D
∂p( j)

=
∂P
∂λ(i)

,
n∑

j=1

(
1
2

F−1εc

)
i j

∂D
∂λ( j)

=
∂P
∂p(i)

, i = 1, . . . , n. (4.10)

Since the matrix F is not yet determined, it is convenient to set

2εc−1F = I,
1
2

F−1εc = I,

hence

F =
1
2
εc, F̃ = −1

2
C̃εc, p(i) =

1
2

⎛
⎝u(i) −

n∑
j=1

ũ( j)C̃ ji

⎞
⎠ εici, i = 1, . . . , n.

The advantage of such a choice is that conditions (4.10) are satisfied by potentials of the
following kind

D = F (p+ λ, q) + G(p− λ, q), P = F (p+ λ, q) − G(p− λ, q). (4.11)

It must be remembered that the matrix C̃ must satisfy constraints (4.4) and (4.5). By setting

C̃ =
√

c̃C(
√

c)−1, (4.12)

the constraints become

CT ε̃C = −ε, CεCT = −ε̃.

For N = 3 there are no solutions. For N = 4, solutions are possible provided n = 2. Then all
matrices are quadratic and |C|2 = |ε‖ε̃|, since N/2 is even. Then |ε| = |ε̃| and C is invertible.
If C is invertible the contraints above are identical. In summary, for N = 4, ε1ε2ε̃1ε̃2 = 1 and

C =

(
a τ2c
c τ1a

)
, τ 2

1 = τ 2
2 = 1, |C| = τ1a2 − τ2c2 = τ2ε1ε̃2, τ1τ2ε1ε2 = −1.

(4.13)

Looking in more details at the possible values of εi and ε̃i, the previous solution gives rise to
the following cases

ε1ε̃2 = 1, τ1τ2 = 1, ε1ε2 = −1, ε2ε̃2 = −1, a2 − c2 = 1

ε1ε̃2 = −1, τ1τ2 = 1, ε1ε2 = −1, ε2ε̃2 = 1, c2 − a2 = 1,

ε1ε̃2 = −1, τ1τ2 = −1, ε1ε2 = 1, ε2ε̃2 = −1, c2 + a2 = 1. (4.14)

Notice that setting c = 0 the following diagonal solution is obtained

C =

(
a 0
0 τa

)
, a2 = 1, τ 2 = 1, ε1ε̃1 = −1. (4.15)

Because C is invertible, it is possible to make use of the change of variables performed
previously and operate in terms of fields q(i), p(i) and λ(i) with i = 1, 2.
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4.2. Free fields at a type II junction

Consider the case when the fields on the branches are massive free fields. Following the obser-
vation (4.12), it is useful to define a new set of q, p, λ variables by performing a simple
rescaling. The new set will be q(

√
c)/2, p(

√
c)−1, λ(

√
c)−1. Then

qT =
1
2

(
u
√

cI + ũ
√

c̃C
)T

, (εp)T =
1
2

(
u
√

cI − ũ
√

c̃C
)T

, (4.16)

which implies

(u
√

c)T = (εp+ q)T , (ũ
√

c̃)T = (qC−1 − εpC−1)T . (4.17)

It is worth stressing that vectors u, ũ, q, p, λ are two dimensional and matrices C, ε, c, c̃ are
(2 × 2). The rescaling does not change (4.10), hence the potentials have the form (4.11). On
the other hand, (4.9) reads

2∑
i=1

(
∂D
∂q(i)

∂P
∂λ(i)

− ∂P
∂q(i)

∂D
∂λ(i)

)
= 2

2∑
i=1

(
εiciU

(i) + ε̃ic̃iŨ
(i)
)
. (4.18)

The functions F and G in (4.11) will have the form

F =
1
2

(p+ λ)T F1(p+ λ) +
1
2

qTF2q + (p+ λ)T F3q,

G =
1
2

(p− λ)T G1(p− λ) +
1
2

qTG2q + (p− λ)TG3q,

where F1, F2, G1, G2, are symmetric matrices and the right-hand side of (4.18) becomes

uTεMu + ũT ε̃M̃ũ = qTN1q + pT N1 p+ 2qTN2 p,

with M = diag(m2
1, m2

2), M̃ = diag(m̃2
1, m̃2

2) and

N1 = εM + εC−1M̃ε̃(C−1)Tε, εN2 = εM − εC−1M̃ε̃(C−1)Tε.

Because of the absence of auxiliary fields on the right-hand side of (4.18), the matrix N1

must be zero. In the most general case, that is when both a and c are different from zero, all
masses are forced to have the same value m. On the other hand, the conditions on the masses
are m̃1 = m1 and m̃2 = m2 if either c or a are zero. The matrix N2 simplifies and becomes
N2 = diag(2m2, 2m2), or N2 = diag(2m2

1, 2m2
2), respectively. Finally, the additional constraints

imposed by (4.18) are:

F2G3 + G2F3 = F3G1 + (G3F1)T = 0,

F3G3 + F1G2 = G3F3 + G1F2,

2(F3G3 + F1G2) = N2. (4.19)

Solutions can be found in appendix B. In this section the following simple solution

F1 = G1 =

(
0 α
α 0

)
, F2 = G2 =

(
0 m2/α

m2/α 0

)
, F3 = G3 = 0,
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with m = m1 = m2, will be considered since it suffices to show the presence of bound states at
the junction. Choose C = ε = diag(1, 1) = −ε̃, with ũ(1), ũ(2) the incoming plane waves. Then,
the transmission matrix at the junction, located at x = 0, is:

(√
c1u(1)

0√
c2u(2)

0

)
=

1
(iκ− α)(iκ+ α)

(
(κ− α)(κ+ α) i2κα

i2κα (κ− α)(κ+ α)

)(√
c̃1ũ(1)

0√
c̃2ũ(2)

0

)
.

A bound state for this solution is:

ũ(1) = ũ(1)
0 e−iωt eαx/c̃1 , x < 0; u(1) = 0, x > 0,

ũ(2) = ũ(2)
0 e−iωt eαx/c̃2 , x < 0; u(2) = 0, x > 0,

with α2 < m2. The details of the calculation have been relegated to appendix B.

5. Non-linearity at a type II junction

As mentioned before, at the beginning of section 3.3, the type II junction provides more space
for manoeuvre than a type I junction and, as a consequence, a Liouville field can be located on
each of the four branches of a four-branch junction. This idea will be explored further in this
section.

Consider the matrix C (4.13). Without lost of generality, choose

C =

(
a c
c −a

)
, c2 + a2 = 1,

corresponding to the last case in (4.14) with τ 1 = −1, τ 2 = 1, ε1 = ε2 = 1, ε̃1 = ε̃2 = −1.
The fields ũ(1), ũ(2) will be relabeled as u(3), u(4), respectively. Then, the Liouville potential for
a field u(i) is taken to be:

U(i) =
l2i

2ci
e2βi

√
ciu

(i)
.

Then, using (4.17) the right-hand side of relation (4.18) can be rewritten in terms of the two
dimensional vectors p and q as

2
2∑

j=1

(εiciU
(i) + ε̃ic̃iŨ(i)) ≡

4∑
j=1

ωiciU
(i) =

4∑
k=1

l2kωk e2αk·(p+ωkq), (5.1)

with

αT
1 = β1(1, 0), αT

2 = β2(0, 1), ω1 = ω2 = 1,

αT
3 = β3(−a,−c), αT

4 = β4(−c, a), ω3 = ω4 = −1.

Suitable expressions for the functions F and G are:

F =

4∑
k=1

xk eαk ·(p+λ)eγk ·q, G =

4∑
l=1

yl eαl·(p−λ)eδl·q,
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where xi, yi are constants and γ i, δi are two dimensional vectors constrained by the relation
(4.18). The left-hand side of this relation reads

2∑
i=1

(
∂D
∂q(i)

∂P
∂λ(i)

− ∂P
∂q(i)

∂D
∂λ(i)

)

= 2
4∑

k,l=1

xkyl(γk · αl + δl · αk)e(αk+αl)·p+(αk−αl)·λ+(γk+δl)·q. (5.2)

Expressions (5.1) and (5.2) must coincide. Clearly the terms in (5.2) with k = l provide the
terms in (5.1) if

(γk + δk) = 2ωkαk, 4xkyk(αk · αk) = l2k . (5.3)

This implies

δk = (2ωkαk − γk), xkyk =
l2k

4β2
k

,

since (αk · αk) = β2
k . The remaining terms in (5.2) have all different exponentials. It follows

that they have to be zero independently, which implies

(γk · αl + δl · αk) = 0 → γl · αk − γk · αl = 2ωl(αk · αl), k �= l. (5.4)

By interchanging the indices k and l in these relations, the following compatibility conditions
are obtained

(αk · α j)(ωk + ωl) = 0.

In the present case they are satisfies, as it can be easily verified. Hence, the remaining relations
are:

(α1 · γ2 − α2 · γ1) = 0, (α3 · γ4 − α4 · γ3) = 0,

(α1 · γ3 − α3 · γ1) = 2aβ1β3, (α1 · γ4 − α4 · γ1) = 2cβ1β4,

(α2 · γ3 − α3 · γ2) = 2cβ2β3, (α2 · γ4 − α4 · γ1) = −2aβ2β4. (5.5)

These relations constrain the vectors γ i. Setting

γT
1 = (a1, a2), γT

2 = (b1, b2), γT
3 = (k1, k2), γT

4 = (l1, l2),

the constraints are

β1b1 = β2a2,

β1l1 = β3(2β1a − aa1 − ca2),

β1k1 = β4(2β1c − ca1 + aa2),

β2l2 = β3(2β2c − cb2 − ab1),

β2k2 = −β4(2β2a − ab2 + cb1). (5.6)
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A couple of examples can be provided. For instance, setting b1 = a2 = 0, a2 = β1, b1 = β2,
then γ i = δi, for i = 1, 2, 3, 4, αk = γk, for k = 1, 2 and αl = −γl for l = 3, 4. Then, the
function F and G become

F =
1
2

4∑
k=1

lkσk

βk
eαk ·(p+λ+ωkq), G =

1
2

4∑
k=1

lk
σkβk

eαk ·(p−λ+ωkq),

and the defect potential, in terms of the fields u(i), which have been redefined to include a factor√
ci, is:

D = F + G =
l1

2β1
eβ1u(1)

(
σ1 eβ1λ

(1)
+

1
σ1

e−β1λ
(1)
)

+
l2

2β2
eβ2u(2)

(
σ2 eβ2λ

(2)
+

1
σ2

e−β2λ
(2)
)

+
l3

2β3
eβ3u(3)

(
σ3 eβ3(−aλ(1)−cλ(2)) +

1
σ3

e−β3(aλ(1)+cλ(2))

)

+
l4

2β4
eβ4u(4)

(
σ4 eβ4(−cλ(1)+aλ(2)) +

1
σ4

e−β4(cλ(1)−aλ(2))

)
. (5.7)

On the other hand, by setting a1 = β1, a2 = 2β1, b1 = 2β2, b2 = β2, it is found that

γT
1 = β1(1, 2), γT

2 = β2(2, 1), γT
3 = β3(a − 2c, c − 2a), γT

4 = β4(c + 2a,−a − 2c),

δT
1 = β1(1,−2), δT

2 = β2(−2, 1), δT
3 = β3(a + 2c, c + 2a), δT

4 = β4(c − 2a,−a + 2c)

and the defect potential becomes

D = F + G =
l1

2β1
eβ1u(1)

(
σ1 eβ1V(1)

+
1
σ1

e−β1V(1)
)

+
l2

2β2
eβ2u(2)

(
σ2eβ2V(2)

+
1
σ2

e−β2V(2)
)

+
l3

2β3
eβ3u(3)

(
σ3eβ3V(3)

+
1
σ3

e−β3V(3)
)

+
l4

2β4
eβ4u(4)

(
σ4eβ4V(4)

+
1
σ4

e−β4V(4)
)

, (5.8)

with

V (1) = u(2) + cu(3) − au(4) + λ(1),

V (2) = u(1) + au(2) − cu(4) + λ(2),

V (3) = −cu(1) − au(2) − 2acu(3) + (a2 − c2)u(4) − aλ(1) − cλ(2),

V (4) = au(1) − cu(2) + (a2 − c2)u(3) + 2acu(4) − cλ(1) + aλ(2).

Note, by setting c = 1 the matrix C becomes diagonal and the defect potential simplifies fur-
ther. It is clear that the matrix C controls the way in which the Liouville fields interact with the
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auxiliary fields λ(i) and amongst themselves at the junction. The mixing amongst the Liouville
fields is determined by the relations (5.6).

On the other hand, an attempt with the sine-Gordon model proves to be fruitless. In fact,
taking the sine-Gordon potential for the u(i) field to be

U(i) =
m2

i

2β2
i ci

(
eβi

√
ciu(i)

+ e−βi
√

ciu(i)
)

,

and the same C matrix used in the Liouville case, the right-hand side of (4.18) becomes

2
2∑

j=1

(εiciU
(i) + ε̃ic̃iŨ(i)) =

4∑
k=1

ωk

(
mk

βk

)2 (
eαk ·(p+ωkq) + e−αk ·(p+ωkq)

)
. (5.9)

Suitable expressions for the functions F and G are:

F =

4∑
k=1

eαk ·(p+λ)xk(q) + e−αk·(p+λ) x̂k(q),

G =

4∑
l=1

eαl·(p−λ)yl(q) + e−αl·(p−λ)ŷl(q)

where xi, yi, x̂i, ŷi, are unspecified functions of q. The left-hand side of (4.18) reads

2∑
i=1

(
∂D
∂q(i)

∂P
∂λ(i)

− ∂P
∂q(i)

∂D
∂λ(i)

)

= 2
4∑

k,l=1

[
e(αk+αl)·p/2

(
e(αk−αl)·λ/2yl

(
αl ·

∂xk

∂q

)
+ e−(αk−αl)·λ/2xl

(
αl ·

∂yk

∂q

))

− e−(αk+αl)·p/2

(
e−(αk−αl)·λ/2ŷl

(
αl ·

∂ x̂k

∂q

)
+ e(αk−αl)·λ/2 x̂l

(
αl ·

∂ŷk

∂q

))

− e(αk−αl)·p/2

(
e(αk+αl)·λ/2ŷl

(
αl ·

∂xk

∂q

)
+ e−(αk+αl)·λ/2 x̂l

(
αl ·

∂yk

∂q

))

+ e−(αk−αl)·p/2

(
e−(αk+αl)·λ/2yl

(
αl ·

∂ x̂k

∂q

)
+ e(αk+αl)·λ/2xl

(
αl ·

∂ŷk

∂q

))]
.

Terms for which k = l must be equal to (5.9). Hence, the following constraints follow

ωk

(
mk

βk

)2

eωkαk·q ≡ 2

(
yk

(
αk ·

∂xk

∂q

)
+ xk

(
αk ·

∂yk

∂q

))
, (5.10)

ωk

(
mk

βk

)2

e−ωkαk·q ≡ −2

(
ŷk

(
αk ·

∂ x̂k

∂q

)
+ x̂k

(
αk ·

∂ŷk

∂q

))
, (5.11)

ŷk

(
αk ·

∂xk

∂q

)
≡ xk

(
αk ·

∂ŷk

∂q

)
, (5.12)

x̂k

(
αk ·

∂yk

∂q

)
≡ yk

(
αk ·

∂ x̂k

∂q

)
. (5.13)
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A few manipulations on these equations, reveal that they do not have a solution. In fact, using
(5.12) and (5.13) into (5.11), the latter becomes

ωk

(
mk

βk

)2

e−ωkαk·q(xkyk)(x̂kŷk)−1 = −2

(
yk

(
αk ·

∂xk

∂q

)
+ xk

(
αk ·

∂yk

∂q

))
.

Combining this expression with (5.10), the following constraint is obtained

e−2ωkαk ·q(xkyk)(x̂kŷk)−1 = −1,→ x̂kŷk = −(xkyk)e−2ωkαk ·q.

This expression can be used inside (5.11), since (5.11) can be rewritten as follows

ωk

(
mk

βk

)2

e−ωkαk·q = −2

(
αk ·

∂(x̂kŷk)
∂q

)
.

By expanding it, it is found that

2

(
αk ·

∂(xkyk)
∂q

)
= ωk

(
mk

βk

)2

eωkαk·q + 2ωk(xkyk)(αk · αk).

This expression can be compared with (5.10), which rewritten reads

2

(
αk ·

∂(xkyk)
∂q

)
= ωk

(
mk

βk

)2

eωkαk·q,

implying (xkyk) = 0, which clearly is not a possibility.
The only way out is the possibility of having two pairs of type II defects. This possibility

arises by noticing that the matrix C simplifies by setting a = 0, c = −1. The advantage of this
situation is that by setting β1 = β4 and β2 = β3, it can be noticed that α1 = α4 and α2 = α3.
Then the constraints analogous to (5.10)–(5.13) become:(

mk

βk

)2 (
eαk ·q − e−αk·q

)
≡ 2

(
yk

(
αk ·

∂xk

∂q

)
+ xk

(
αk ·

∂yk

∂q

))
,

(
mk

βk

)2 (
eαk ·q − e−αk·q

)
≡ 2

(
ŷk

(
αk ·

∂ x̂k

∂q

)
+ x̂k

(
αk ·

∂ŷk

∂q

))
,

ŷk

(
αk ·

∂xk

∂q

)
≡ xk

(
αk ·

∂ŷk

∂q

)
,

x̂k

(
αk ·

∂yk

∂q

)
≡ yk

(
αk ·

∂ x̂k

∂q

)
,

where k = 1, 2, only. The solution of these constraints leads to the familiar result.

6. Concluding remarks

In this article, the existence of integrable defects able to relate domains with different wave
speeds has been explored. For the sine-Gordon model, a junction can only have two branches,
or be a junction that acts as a meeting point of defects, each with two branches. In this case
the junction allows to pair branches in several ways and effectively acts as a switch and/or a
store of topological charge. Moreover, though the coupling constants of the models in the two
domains of an N = 2 junction are different, the S matrices appropriate to each branch are the

23



J. Phys. A: Math. Theor. 53 (2020) 484001 E Corrigan and C Zambon

same since the ratio c/β2 is preserved across the junction. On the other hand, if the fields on
the different branches are free massive fields, Liouville or free massless, the integrable defects
can support multiple branches at the junction provided there is an even number of them. In this
case, the fields interact at the junction and their mixing is controlled by a variety of parameters.
Multi-field generalisations (for example the conformal or affine Toda field theories) have not
been considered in this first analysis but should be the subject of future investigation.

An alternative setup has been proposed by Sobirov et al in reference [24]. There, the fields
on each branch of a network or graph are required to be continuous at the junction so that,
evaluated at the junction, u(1) = u(2) = · · · = u(N ). Then, in the notation of the present article,
(3.3), the conservation of energy requires

Ė =
N∑

i=1

εic
2
i

[
u(i)

t u(i)
x

]
x0
=

[
u(1)

t

N∑
i=1

εic
2
i u(i)

x

]
x0

= 0,

and thus at the junction

N∑
i=1

εic
2
i u(i)

x = 0. (6.1)

On the other hand, conserving momentum (term by term in the expression for Ṁ in this setup)
is guaranteed by setting

N∑
i=1

εici = 0,
N∑

i=1

εic
3
i (u(i)

x )2 = 0, U(1) = U(2) = · · · = U(N). (6.2)

The two conditions involving the spatial derivatives of the fields on each branch evaluated at
the junction are then solved together by taking

c1u(1)
x = c2u(2)

x = · · · = cNu(N)
x . (6.3)

Note also, since the potentials must be the same along each branch, the coupling constants
must be identical. The conditions (6.1)–(6.3) are applicable to any choice of N. However,
if N = 2, the junction disappears because the wave speeds on either side of it must be the
same. Note also, this type of junction introduces no additional tunable parameters at the
junction.

It is worth noting that if it became necessary to assemble junctions joining branches with
different wave speeds then it would always be possible to change speed along a particular
branch by inserting a type I defect, in the manner explained in section 2, at the junction of the
two domains along the branch. For example, taking N = 3, ε1 = −1, ε2 = ε3 = 1, inserting
defects in the branches 2 and 3 to restore the wave speeds along those branches to c1, and
using (2.7), requires

c1

β2
2

=
c2

β2
1

,
c1

β2
3

=
c3

β2
1

.

Hence, the new coupling constants along the branches 2 and 3 should be chosen so that

1
β2

1

=
1
β2

2

+
1
β2

3

,

the latter following from the first constraint in (6.2).
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Though this article has focussed on the classical properties of field theories defined on
branches meeting at junctions, it would be interesting also to explore if and how a network
might support quantum field theories that interact consistently at its junctions. The purpose
would be to find generalisations of ideas contained, for example, in [35, 36]. In this context it
is not precisely clear what the consistency condition might be. In the type of junction discussed
in [24], the sine-Gordon coupling constant β on each branch is the same but the wave speeds
in the three branches add appropriately. This means that the dimensionless quantities

c
�β2

are different on each of the branches and therefore the S-matrices have the same form but
with different parameters. This contrasts with the situation discussed earlier in section 2.4. In
the notation of [6], the Zamolodchikov sine-Gordon S-matrix [34] depends on the coupling
constant via

q = eiπγ , γ =
8πc
�β2

− 1, x = eγθ.

Thus, in a situation at a junction where the wave speeds on the three branches satisfy
c1 = c2 + c3, the following relations hold for a specific rapidity:

q2q3 = −q1, x2x3 = x1 e−θ.

If two solitons with differing rapidities approach the junction along branch 1 then they may
scatter before or after splitting at the junction. Hence, adapting the Yang–Baxter equation to
this situation suggests a suitable consistency condition might then be

Sdc
1ab(θ12)Je f

d (θ1)Jgh
c (θ2) = Jpu

b (θ2)Jqv
a (θ1)Sge

2qp(θ12)Sh f
3vu(θ12), θ12 = θ1 − θ2, (6.4)

where repeated indices are summed. Here, the rapidity-dependent quantities with three labels,
Jbc

a (θ) represent the splitting at the junction. It is straightforward to see that if the junction
strictly preserves topological charge as claimed for instance in [24], then there is no solution to
(6.4). However, it is less clear if there are solutions to a modified version of (6.4) if topological
charge is not preserved and may be deposited on or removed from a junction, as happens for
integrable defects. Investigating equations of type (6.4) will be the focus of a future discussion.
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Appendix A. Type II junction—the setting

Consider a junction with N branches located at x = 0. The starting point for a type II junction
could be the following junction Lagrangian:

L =

⎛
⎝ N∑

i, j=1

u(i)Ai ju
( j)
t +

M∑
k,l=1

λ(k)Gklλ
(l)
t +

N∑
i=1

M∑
k=1

u(i)Cikλ
(k)
t −D

(
u(i),λ(k)

)⎞⎠ δ(x),

AT = −A, GT = −G,
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where M is the number of the auxiliary fields λ(k), which represent the additional degrees of
freedom at the junction and D is the potential at the junction, which depends on all fields in the
systems, i.e. u(i) and λ(k). Since they are free, it is possible to perform transformations which
allow to simplify the original setting. By following the manipulations in [21], it can be shown
that the auxiliary fields λ(k) can be split into two different sets, μ(k) and λ(k). The interesting
feature is that fields μ(k) only interact with themselves, at the junction, while fields λ(k) interact
exclusively with the fields u(i). In summary, the new junction Lagrangian becomes

L =

⎛
⎝ N∑

i, j=1

1
2

u(i)Ai ju
( j)
t +

M1∑
k,l=1

1
2
μ(k)Gklμ

(l)
t +

N∑
i=1

M2∑
m=1

u(i)Cimλ
(m)
t

−D(u(i),μ(k),λ(m))

⎞
⎠ δ(x),

with M1 + M2 = M and, in addition, GTG = I, G2 = −I. Note that the presence of the fields
μ(k) implies the presence of an A matrix. The conditions at the junction are:

c2
i u(i)

x =

⎛
⎝ N∑

j=1

Ai ju
( j)
t +

M2∑
m=1

Cimλ
(m)
t − ∂D

∂u(i)

⎞
⎠ εi, i = 1, . . . , N, (A.1)

M1∑
l=1

Gklμ
(l)
t =

∂D
∂μ(k)

, i = 1, . . . , M1, (A.2)

N∑
i=1

u(i)
t Cim = − ∂D

∂λ(m)
, m = 1, . . . , M2. (A.3)

Then, concerning the energy E

Ė =

N∑
i=1

εic
2
i u(i)

t u(i)
x = −

N∑
i=1

(
u(i)

t
∂D
∂u(i)

)
−

M2∑
m=1

(
λ(i)

t
∂D
∂λ(i)

)
=

dD
dt

.

On the other hand, applying condition (A.1) on the time derivative of the scaled momentum,
i.e.

Ṁ =

N∑
i=1

(
1
2

(u(i)
t )2 +

c2
i

2
(u(i)

x )2 − U(i)

)
εici,

a constraint can be derived straight away by looking at the coefficients of the terms square in
the time derivative of the auxiliary fields. They need to cancel, which implies

CTεc−1C = 0. (A.4)

Note that, C is an N × M2 matrix, where M2 � N is the number of λ(m) fields. A suitable
transformation on the fields λ(m) can be used to reduce the number of linearly independent
columns of C so that all the other columns are zero. This means that there will be only
n � M2λ

(m) since the other M2 − n decouple and can be removed altogether from the junc-
tion Lagrangian. Let us call n the number of linearly independent columns of C. Since the
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matrix C has rank n, it follows that it must exist a square (n × n) sub-matrix, which is invert-
ible. Hence C can be split into an (n × n) invertible matrix and an ((N − n) × n) matrix. Note
that, in addition, a suitable transformation on the field μ(m) can be performed to reduce the
(n × n) invertible matrix to the (n × n) identity. It is worth pointing out that the limiting case
n = N, allows to set C = 1. As a consequence, the constraint (A.4) reduces to

εc−1 = 0

and it cannot clearly be satisfied. Note that for N = 2 and n = 1, i.e. one auxiliary field, the
matrix C is:

C =

(
1

C21

)

and the constraint (A.4) becomes

(
CTεc−1C

)
11

= 0 → ε1 = −ε2, C21 = ±
√

c2

c1
.

Hence the familiar type II defect is recovered.

A.1. The constraints

In view of what has been found, it is convenient to split the fields u(i) into two separated groups,
according to the way in which they interact with the μ(k) fields, that is via the diagonal part of
the C matrix or the remaining one. Hence, the new starting point for the junction part of the
Lagrangian is:

L =

⎛
⎝ n∑

i, j=1

u(i) Ai j

2
u( j)

t +

N−n∑
k,l=1

ũ(k) Ãkl

2
ũ(l)

t +

n∑
i=1

N−n∑
k=1

u(i)Bikũ(k)
t

+

n∑
i, j=1

u(i)δi jλ
( j)
t +

n∑
j=1

N−n∑
k=1

ũ(k)C̃k jλ
( j)
t −D

(
u(i), ũ(k),λ( j)

)⎞⎠ δ(x),

where, for simplicity, the fields μ(m) have been removed altogether. Note that A = −AT is
a (n × n) matrix, Ã = −ÃT a ((N − n) × (N − n)) matrix, B is a (n × (N − n)) and C̃ is a
((N − n) × n) matrix. The conditions at the junction are:

c2
i u(i)

x =

⎛
⎝ n∑

j=1

(
Ai ju

( j)
t + δi jλ

( j)
t

)
+

N−n∑
k=1

Bikũ(k)
t − ∂D

∂u(i)

⎞
⎠ εi, i = 1, . . . , n, (A.5)

c̃2
k ũ(k)

x =

⎛
⎝N−n∑

k=1

Ãklũ
(l)
t +

n∑
j=1

(
C̃k jλ

( j)
t − B jku( j)

t

)
− ∂D

∂ũ(k)

⎞
⎠ ε̃k, k = 1, . . . , N − n, (A.6)

u(i)
t δ ji +

N−n∑
k=1

ũ(k)
t C̃ki = − ∂D

∂λ(i)
, i = 1, . . . , n. (A.7)

It is worth looking afresh at the time derivative of the scaled momentum. All the constraints
derived below, are due to the fact that the coefficients of certain terms containing combinations
of different fields must cancel independently. First, by implementing the relations (A.5) and
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(A.6), a constraint is immediately derived from the coefficients quadratic in the auxiliary fields
λ( j)

t . They lead to:

εc−1 + C̃T ε̃c̃−1C̃ = 0. (A.8)

Second, using the condition (A.7) together with the constraint already obtained, it is possible to
get two further constraints. The former is derived from the coefficients of the terms proportional
to the product of ũ(k)

t and λ( j)
t fields. The constraint derived is:

Ã + C̃AC̃T = C̃B − (C̃B)T . (A.9)

The latter stems from the terms quadratic in the fields ũ(k)
t . This constraint is:

ε̃c̃ + C̃εcC̃T = 0. (A.10)

The remaining terms lead to

Ṁ = X + Y = −dP
dt

,

with

X =
n∑

i=1

εi

2ci

(
∂D
∂u(i)

)2

+
N−n∑
k=1

ε̃k

2c̃k

(
∂D
∂ũ(k)

)2

+

n∑
i, j=1

1
2
∂D
∂λ(i)

(
εc − Aεc−1A + Bε̃c̃−1BT

)
i j

∂D
∂λ( j)

−
n∑

i, j=1

∂D
∂λ(i)

(
Aεc−1

)
i j

∂D
∂u( j)

−
n∑

j=1

N−n∑
k=1

∂D
∂λ( j)

(
Bε̃c̃−1

)
jk

∂D
∂ũ(k)

−
n∑

i=1

εiciU
(i) −

N−n∑
k=1

ε̃kc̃kŨ(k),

and

Y = −
n∑

j=1

N−n∑
k=1

λ( j)
t

(
C̃T ε̃c̃−1

)
jk

∂D
∂ũ(k)

−
n∑

i, j=1

λ(i)
t

(
εc−1

)
i j

∂D
∂u( j)

−
n∑

j=1

N−n∑
k=1

ũ(k)
(

BTεc−1 + C̃Aεc−1
)

k j

∂D
∂u( j)

+

N−n∑
k,l=1

ũ(k)
(

Ãε̃c̃−1 − C̃Bε̃c̃−1
)

kl

∂D
∂ũ(l)

+

n∑
j=1

N−n∑
k=1

ũ(k)
t

(
C̃εc − C̃Aεc−1A + C̃Bε̃c̃−1B

− BTεc−1A − Ãε̃c̃−1BT
)

k j

∂D
∂λ( j)

.
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Appendix B. Type II junction—free fields

Consider the matrix C given by (4.15). Several solutions can be found, for instance

F1 =

(
a1 α
α a2

)
, F2 =

m2

b1b2 − β2

(
b2 −β
−β b1

)
, F3 = 0, (B.1)

G1 =

(
b1 β
β b2

)
, G2 =

m2

a1a2 − α2

(
a2 −α
−α a1

)
, G3 = 0, (B.2)

with m = m1 = m2, or

F1 =

(
a1 0
0 a2

)
, F2 =

(
f1 0
0 f2

)
, F3 =

(
0 σ1

σ2 0

)
, (B.3)

G1 =

(
b1 0
0 b2

)
, G2 =

(
g1 0
0 g2

)
, G3 =

(
0 ω1

ω2 0

)
, (B.4)

with

σ2

σ1
=

a2g1

b1 f1
=

b2 f2

a1g2
, g1a1 + ω2σ1 = b1 f1 + ω1σ2 = m2

1,

ω2

ω1
=

a2g2

b1 f2
=

b2 f1

a1g1
, g2a2 + ω1σ2 = b2 f2 + ω2σ1 = m2

2.

In the most general case, (4.13), the first solution still holds. On the other hand, the second
solution holds only if the two masses are set to be equal. Hence, the constraints become

ω1

ω2
=

f2

f1
,

σ1

σ2
=

g2

g1
,

b2

a1
=

g1

f2
,

b1

a2
=

g2

f1
,

g2a2 + ω1σ2 = g1a1 + ω2σ1 = m2,

where m = m1 = m2. In order to calculate the transmission matrix, T , corresponding to plane
waves on the four legs, the sewing conditions at the junction, (4.1)-(4.3), must be used. When
rewritten in terms of variables p and q defined in (4.16), they are

2λ(i)
t −

2∑
j=1

(εc +A)i jq
( j)
x −

2∑
j=1

(εc −A)i jε jp
( j)
x =

∂D
∂q(i)

, i = 1, 2,

2∑
j=1

(εc −A)i jq
( j)
x +

2∑
j=1

(εc +A)i jε jp
( j)
x = −εi

∂D
∂p(i)

, i = 1, 2,

2q(i)
t = − ∂D

∂λ(i)
, i = 1, 2, and A =

(
CT ε̃c̃−1C

)−1
,

where the subscripts x and t stand for derivatives with respect to x and t, respectively. Note
the first two relations have been obtained by taking the sum and the difference of the relations
(4.1), (4.2). As an example, consider the first solution of this section, that is the solution with
F3 = G3 = 0, and the case in which the matrix C is diagonal. In this caseA reduces toA = −εc̃
and the previous expressions become
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2λ(i)
t − εi(ci − c̃i)q(i)

x − (ci + c̃i)p(i)
x =

2∑
j=1

(F2 + G2)i jq
( j),

εi(ci + c̃i)q(i)
x + (ci − c̃i)p(i)

x = −εi

2∑
j=1

(
(F1 + G1)i jp

( j) + (F1 − G1)i jλ
( j)
)

,

2q(i)
t = −

2∑
j=1

(
(F1 − G1)i jp

( j) + (F1 + G1)i jλ
( j)
)

, (B.5)

where the label i runs from 1 to 2. Assume no reflection and use the following notation for the
plane waves—which is similar to the notation used in section 3.2,

u(i) = u(i)
0 ei(ki x−ωt), ũ(i) = ũ(i)

0 ei(̃ki x−ωt), ω2 = κ2 + m2,

(ciki)2 ≡ (c̃ik̃i)2 ≡ κ2, i = 1, 2.

For simplicity, the junction is located at x0 = 0. After some algebra, relations (B.5) provide an
expression for the auxiliary fields λ and two equivalent expressions involving only the fields u
and ũ. The latter are:

2∑
j=1

(
Xi j

√
c ju

( j)
0 + Yi j(Cjj

√
c̃ jũ

( j)
0 )
)
= 0,

2∑
j=1

(
Wi j

√
c ju

( j)
0 + Zi j(Cjj

√
c̃ jũ

( j)
0 )
)
= 0, (B.6)

with

X = i(A−1Ω+ B−1K) − 1
2

(
A−1εB − B−1εA

)
,

Y = i(A−1Ω+ B−1K) +
1
2

(
A−1εB − B−1εA

)
,

W = i(εK − A−1ΩεB) −
(

2A−1Ω2 − E
2

)
,

Z = −i(εK − A−1ΩεB) −
(

2A−1Ω2 − E
2

)
,

where

A = F1 + G1, B = F1 − G1, E = F2 + G2, Ω = diag(ω,ω) K = diag(κ,κ).

It follows that transmission matrix, T , is:

√
ciu

(i)
0 =

2∑
j=1

Ti j

√
c̃ jũ

( j)
0 , T ≡ −X−1YC = −W−1ZC,
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where ũ(1), ũ(2) are taken to be the incoming waves. Without lose of generality and looking at
(4.15), it is possible to choose C = ε = diag(1, 1), then T is:

T =
1

f − ig

(
a − ib −ic
−ic a + ib

)
, TT† = I, (B.7)

with

a = −(a1a2 − α2)(ω + κ)2 − (b1b2 − β2)(ω − κ)2 + (a1b2 + a2b1 − 2αβ)(ω2 − κ2)

− 4(a1a2 − α2)(b1b2 − β2),

b = 2(b1 − b2)(a1a2 − α2)(ω + κ) − 2(a1 − a2)(b1b2 − β2)(ω − κ),

c = 4β(a1a2 − α2)(ω + κ) − 4α(b1b2 − β2)(ω − κ),

f = (a1a2 − α2)(ω + κ)2 − (b1b2 − β2)(ω − κ)2 + (a1b2 + a2b1 − 2αβ)(ω2 − κ2)

− 4(a1a2 − α2)(b1b2 − β2),

g = 2(b1 + b2)(a1a2 − α2)(ω + κ) − 2(a1 + a2)(b1b2 − β2)(ω − κ),

Some simplified cases can be analysed in more details. For instance, setting α = β = 0, the
transmission matrix becomes diagonal

T = −
(

t1 0
0 t2

)
, (B.8)

with

t1 =
iκ(a1 + b1) + iω(a1 − b1) − 2a1b1

iκ(a1 + b1) + iω(a1 − b1) + 2a1b1
, t2 =

iκ(a2 + b2) + iω(a2 − b2) − 2a2b2

iκ(a2 + b2) + iω(a2 − b2) + 2a2b2
.

On the other hand, setting a1 = a2 = b1 = b2 = 0 the transmission matrix becomes

T =
1
f

(
a ic
ic a

)
,

with

a = (ακ+ αω + βκ− βω − 2αβ)(ακ+ αω + βκ− βω + 2αβ),

c = 4αβ(ακ+ αω + βκ− βω),

f = (iακ+ iαω + iβκ− iβω − 2αβ)(iακ+ iαω + iβκ− iβω + 2αβ),

which simplifies further to

T =
1

(iκ− α)(iκ+ α)

(
(κ− α)(κ+ α) i2κα

i2κα (κ− α)(κ+ α)

)
, (B.9)

by setting α = β.
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212
[19] Penati S and Polvara D 2019 Quantum anomalies in A(1)

r Toda theories with defects J. High Energy
Phys. JHEP06(2019)062

[20] Robertson C 2014 Folding defect affine Toda field theories J. Phys. A: Math. Theor. 47 185201
Robertson C 2014 Defect fusing rules in affine Toda field theory J. Phys. A: Math. Theor. 47 485205

[21] Bristow R and Bowcock P 2017 Momentum conserving defects in affine Toda field theories J. High
Energy Phys. JHEP05(2017)153

Bristow R 2017 Integrability of generalised type II defects in affine Toda field theory J. High Energy
Phys. JHEP11(2017)067

[22] Konopelchenko B G 1992 Introduction to Multidimensional Integrable Equations: The Inverse
Spectral Transform in 2+1 Dimensions (New York: Springer)

[23] Sobirov Z, Matrasulov D, Sabirov K, Sawada S and Nakamura K 2010 Soliton solutions of nonlinear
Schrödinger equation on simple networks Phys. Rev. E 81 066602

Nakamura K, Sobirov Z A, Matrasulov D U and Sawada S 2011 Transport in simple networks
described by integrable discrete nonlinear Schrödinger equation Phys. Rev. E 84 026609

Sobirov Z A, Sabirov K K and Matrasulov D U 2013 Stationary nonlinear Schödinger equation on
simplest graphs: boundary conditions and exact solutions Phys. Lett. A 377 860

[24] Sobirov Z, Babajanov D, Matrasulov D, Nakamura K and Uecker H 2016 Sine-Gordon solitons in
networks: scattering and transmission at vertices Europhys. Lett. 115 50002

[25] Nakajima K, Onodera Y and Ogawa Y 1976 Logic design of Josephson network J. Appl. Phys. 47
1620

[26] Caputo J-G and Dutykh D 2014 Nonlinear waves in networks: model reduction for the sine-Gordon
equation Phys. Rev. E 90 022912

32

https://doi.org/10.1016/0550-3213(94)90032-9
https://doi.org/10.1016/0550-3213(94)90032-9
https://doi.org/10.1016/s0550-3213(98)00712-3
https://doi.org/10.1016/s0550-3213(98)00712-3
https://doi.org/10.1016/s0370-2693(02)02776-4
https://doi.org/10.1016/s0370-2693(02)02776-4
https://doi.org/10.1142/s0217751x04020324
https://doi.org/10.1142/s0217751x04020324
https://doi.org/10.1142/s0217751x04020324
https://doi.org/10.1142/s0217751x04020324
https://doi.org/10.1088/1126-6708/2004/01/056
https://doi.org/10.1088/1126-6708/2005/08/023
https://doi.org/10.1088/0951-7715/19/6/012
https://doi.org/10.1088/0951-7715/19/6/012
https://doi.org/10.1088/0305-4470/39/23/020
https://doi.org/10.1088/0305-4470/39/23/020
https://doi.org/10.1088/1126-6708/2007/07/001
https://doi.org/10.1016/j.nuclphysb.2007.11.022
https://doi.org/10.1016/j.nuclphysb.2007.11.022
https://doi.org/10.1088/1126-6708/2008/03/001
https://doi.org/10.1142/s0219887808003223
https://doi.org/10.1142/s0219887808003223
https://doi.org/10.1088/1751-8113/42/47/475203
https://doi.org/10.1088/1751-8113/42/47/475203
https://doi.org/10.1142/s0217751x1005007x
https://doi.org/10.1142/s0217751x1005007x
https://doi.org/10.1088/1751-8113/43/34/345201
https://doi.org/10.1088/1751-8113/43/34/345201
https://doi.org/10.1007/JHEP11(2012)008
https://doi.org/10.1007/JHEP02(2015)175
https://doi.org/10.1016/j.nuclphysb.2016.08.006
https://doi.org/10.1016/j.nuclphysb.2016.08.006
https://doi.org/10.1007/JHEP06(2019)062
https://doi.org/10.1088/1751-8113/47/18/185201
https://doi.org/10.1088/1751-8113/47/18/185201
https://doi.org/10.1088/1751-8113/47/48/485205
https://doi.org/10.1088/1751-8113/47/48/485205
https://doi.org/10.1007/JHEP05(2017)153
https://doi.org/10.1007/JHEP11(2017)067
https://doi.org/10.1103/physreve.81.066602
https://doi.org/10.1103/physreve.81.066602
https://doi.org/10.1103/physreve.84.026609
https://doi.org/10.1103/physreve.84.026609
https://doi.org/10.1016/j.physleta.2013.02.011
https://doi.org/10.1016/j.physleta.2013.02.011
https://doi.org/10.1209/0295-5075/115/50002
https://doi.org/10.1209/0295-5075/115/50002
https://doi.org/10.1063/1.322782
https://doi.org/10.1063/1.322782
https://doi.org/10.1103/physreve.90.022912
https://doi.org/10.1103/physreve.90.022912


J. Phys. A: Math. Theor. 53 (2020) 484001 E Corrigan and C Zambon

[27] Katz B 1966 Nerve, Muscle, and Synapse (New York: McGraw-Hill)
[28] Heimburg T and Jackson A D 2005 On soliton propagation in biomembranes and nerves Proc. Natl

Acad. Sci. 102 9790
[29] Lautrup B, Appali R, Jackson A D and Heimberg T 2011 The stability of solitons in biomembranes

and nerves Eur. Phys. J. E 34 57
[30] Appali R, van Rienen U and Heimburg T 2012 A comparison of the Hodgkin-Huxley model and

the soliton theory for the action potential in nerves Adv. Planar Lipid Bilayers Liposomes 16 275
[31] Corrigan E and Zambon C 2004 Aspects of sine-Gordon solitons, defects and gates J. Phys. A:

Math. Gen. 37 L471
[32] Toffoli T 1980 Reversible Computing (Automata, Languages and Programming) ed J de Bakker and

J van Leeuwen (Berlin: Springer) p 632
[33] Corrigan E and Zambon C 2018 Type II defects revisited J. High Energy Phys. JHEP09(2018)019
[34] Zamolodchikov A B and Zamolodchikov A B 1979 Factorized S-matrices in two dimensions as the

exact solutions of certain relativistic quantum field theory models Ann. Phys., NY 120 253
[35] Kostrykin V and Schrader R 1999 Kirchhoff’s rule for quantum wires J. Phys. A: Math. Gen. 32

595
Kostrykin V and Schrader R 2000 Kirchhoff’s rule for quantum wires. II: the inverse problem with

possible applications to quantum computers Fortschr. Phys. 48 703–16
[36] Bellazzini B, Mintchev M and Sorba P 2007 Bosonization and scale invariance on quantum wires

J. Phys. A: Math. Theor. 40 2485
Bellazzini B, Burrello M, Mintchev M and Sorba P 2008 Quantum field theory on star graphs Proc.

Symp. Pure Math. 77 639
Khachatryan S, Sedrakyan A and Sorba P 2010 Network models: action formulation Nucl. Phys. B

825 444

33

https://doi.org/10.1073/pnas.0503823102
https://doi.org/10.1073/pnas.0503823102
https://doi.org/10.1140/epje/i2011-11057-0
https://doi.org/10.1140/epje/i2011-11057-0
https://doi.org/10.1016/b978-0-12-396534-9.00009-x
https://doi.org/10.1016/b978-0-12-396534-9.00009-x
https://doi.org/10.1088/0305-4470/37/37/l03
https://doi.org/10.1088/0305-4470/37/37/l03
https://doi.org/10.1007/JHEP09(2018)019
https://doi.org/10.1016/0003-4916(79)90391-9
https://doi.org/10.1016/0003-4916(79)90391-9
https://doi.org/10.1088/0305-4470/32/4/006
https://doi.org/10.1088/0305-4470/32/4/006
https://doi.org/10.1002/1521-3978(200008)48:8&tnqx3c;703::aid-prop703&tnqx3e;3.0.co;2-o
https://doi.org/10.1002/1521-3978(200008)48:8&tnqx3c;703::aid-prop703&tnqx3e;3.0.co;2-o
https://doi.org/10.1002/1521-3978(200008)48:8&tnqx3c;703::aid-prop703&tnqx3e;3.0.co;2-o
https://doi.org/10.1002/1521-3978(200008)48:8&tnqx3c;703::aid-prop703&tnqx3e;3.0.co;2-o
https://doi.org/10.1088/1751-8113/40/10/017
https://doi.org/10.1088/1751-8113/40/10/017
https://doi.org/10.1090/pspum/077/2459894
https://doi.org/10.1090/pspum/077/2459894
https://doi.org/10.1016/j.nuclphysb.2009.09.033
https://doi.org/10.1016/j.nuclphysb.2009.09.033

	Integrable defects at junctions within a network
	1.  Introduction
	2.  Integrable defects
	2.1.  The formalism
	2.2.  Energy
	2.3.  Momentum
	2.3.1.  Type I.
	2.3.2.  Type II.

	2.4.  Remarks

	3.  Type I junction within a network
	3.1.  The setting
	3.2.  Free fields at a type I junction
	3.3.  Non-linearity at a type I junction
	3.4.  Linear Schrödinger equation

	4.  Type II junctions in a network
	4.1.  The setting
	4.2.  Free fields at a type II junction

	5.  Non-linearity at a type II junction
	6.  Concluding remarks
	Acknowledgments
	Appendix A.  Type II junction—the setting
	A.1.  The constraints

	Appendix B.  Type II junction—free fields
	ORCID iDs
	References


