740 research outputs found

    Self-stabilizing positron acceleration in a plasma column

    Full text link
    Plasma accelerators sustain extreme field gradients, and potentially enable future compact linear colliders. Although tremendous progress has been achieved in accelerating electron beams in a plasma accelerator, positron acceleration with collider-relevant parameters is challenging. A recently proposed positron acceleration scheme relying on the wake generated by an electron drive beam in a plasma column has been shown to be able to accelerate positron witness beams with low emittance and low energy spread. However, since this scheme relies on cylindrical symmetry, it is possibly prone to transverse instabilities that could lead, ultimately, to beam break-up. In this article, we show that the witness beam itself is subject to various damping mechanisms and, therefore, this positron acceleration scheme is inherently stable towards misalignment of the drive and witness beams. This enables stable, high-quality plasma-based positron acceleration

    Analysis of time-dependent deformation in tunnels using the Convergence-Confinement Method

    Get PDF
    During the excavation of a tunnel the accumulated wall displacement and the loading of tunnel support is the result of both the tunnel advance (round length and cycle time) and the time-dependent behaviour of the surrounding rock mass. The current approach to analyze the tunnel wall displacement increase is based on the Convergence-Confinement Method (CCM) performed with either analytical (closed form solutions) or the usage of the Longitudinal Displacement Profiles. This approach neglects the influence of time-dependency resulting in delayed deformation that may manifest even minutes or hours after excavation. Failure to consider the added displacements in the preliminary design can result in false selecting the time of installation and the type of support system causing safety issues to the working personnel, leading to cost overruns and project delivery delays. This study focuses on investigating and analyzing the total displacements around a circular tunnel in a visco-elastic medium by performing an isotropic axisymmetric finite difference modelling, proposing a new yet simplified approach that practitioners can use taking into account the effect of time

    Spectral fingerprint of quantum confinement in single CsPbBr3_3 nanocrystals

    Full text link
    Lead halide perovskite nanocrystals (NCs) are promising materials for classical and quantum lightemission applications. To gain a better understanding of their outstanding properties, a thorough understanding of the band-edge exciton emission is needed which is not reachable in ensemble and room temperature studies because of broadening effects. Here, we report on a study of the photoluminescence (PL) of single CsPbBr3_3 NCs in the intermediate quantum confinement regime at cryogenic temperature. We reveal the size-dependence of the spectral features observed in single NCs PL: the bright-triplet exciton energy splittings, the trion and biexciton binding energies as well as the optical phonon replica spectrum. In addition, we show that the bright triplet energy splittings are consistent with a pure exchange model and that the variety of polarisation properties and PL spectra of single CsPbBr3_3 NCs can be simply rationalised by considering the orientation of the emitting dipoles and the thermal populations of the emitting states

    Time-Dependent Model for Brittle Rocks Considering the Long-Term Strength Determined from Lab Data

    Get PDF
    The excavation of tunnels in brittle rocks with high in-situ strengths under large deviatoric stresses has been shown to exhibit brittle failure at the periphery of tunnels parallel to the maximum in-situ stress. This failure can either occur instantaneously or after several hours due to the strength degradation that is implicitly and indirectly considered in typical brittle constitutive models. While these models are powerful tools for engineering analyses, they cannot predict the time at which brittle rupture occurs, but rather, they show a possible failure pattern occurring instantaneously. In this paper, a model referred to as the long-term strength (LTS) model is introduced and implemented into FLAC2D. The model is built as a modified version of the CVISC model, introduced by Itasca, by adding a strength decay function. This function is developed from lab-scale time-to-failure (TTF) data. The LTS model is verified against its corresponding analytical solution using a constant stress creep lab test and implemented into a tunnel-scale model using the geometry, stress, and geologic conditions from the Atomic Energy of Canada Limited Underground Research Laboratory (AECL URL). The results of the LTS tunnel model are then compared to an identical model using the Cohesion Weakening Friction Strengthening (CWFS) approach

    Optical Gating of Resonance Fluorescence from a Single Germanium Vacancy Color Center in Diamond

    Full text link
    © 2019 American Physical Society. Scalable quantum photonic networks require coherent excitation of quantum emitters. However, many solid-state systems can undergo a transition to a dark shelving state that inhibits the resonance fluorescence. Here, we demonstrate that by a controlled gating using a weak nonresonant laser, the resonant fluorescence can be recovered and amplified for single germanium vacancies. Employing the gated resonance excitation, we achieve optically stable resonance fluorescence of germanium vacancy centers. Our results are pivotal for the deployment of diamond color centers as reliable building blocks for scalable solid-state quantum networks
    corecore