99 research outputs found

    Projets de territoires et observation des agglomérations : réflexion à partir des cas de Tours et d'Orléans

    Get PDF
    Orléans et Tours, qui sont les deux agglomérations principales de la région Centre, comptent parmi les aires urbaines françaises qui ont connu, au cours des années 1990, un fort accroissement de leur population. D'Orléans à Nantes, la vallée de la Loire présente le double avantage d'être proche d'une des régions européennes les plus dynamiques - l'Ile de France - et d'être bien équipée en infrastructures autoroutières et ferrées. Les agglomérations d'Orléans et de Tours font donc partie des espaces français attractifs pour les activités économiques et les ménages en quête de localisation. Pourtant, comparées à d'autres villes françaises ou étrangères, Orléans et Tours ne sont absolument pas des métropoles. Après avoir rappelé les éléments principaux qui caractérisent la région Centre et tout particulièrement son espace ligérien, nous verrons à la lumière de l'examen d'un ensemble de diagnostics urbains, liés à quelques exercices récents de planification, que les conditions de l'émergence d'un processus de métropolisation sont loin d'être réunie

    A time and frequency domain analysis of the effect of vibrating fuel assemblies on the neutron noise

    Full text link
    [EN] The mechanical vibrations of fuel assemblies have been shown to give rise to high levels of neutron noise, triggering in some circumstances the necessity to operate nuclear reactors at a reduced power level. This work analyses the effect in the neutron field of the oscillation of one single fuel assembly. Results show two different effects in the neutron field caused by the fuel assembly vibration. First, a global slow variation of the total reactor power due to a change in the criticality of the system. Second, an oscillation in the neutron flux in-phase with the assembly vibration. This second effect has a strong spatial dependence that can be used to localize the oscillating assembly. This paper shows a comparison between a time-domain and a frequency-domain analysis of the phenomena to calculate the spatial response of the neutron noise. Numerical results show a really close agreement between these two approaches.This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 754316. Also, this work has been partially supported by Spanish Ministerio de Economia y Competitividad under project BES-2015-072901 and financed with the help of a Primeros Proyectos de Investigation (PAID-06-18), Vicerrectorado de Investigacitin, Innovation y Transferencia of the Universitat Politecnica de Valencia (UPV).Vidal-Ferràndiz, A.; Carreño, A.; Ginestar Peiro, D.; Demazière, C.; Verdú Martín, GJ. (2020). A time and frequency domain analysis of the effect of vibrating fuel assemblies on the neutron noise. Annals of Nuclear Energy. 137:1-12. https://doi.org/10.1016/j.anucene.2019.107076S112137Akcasu, Z. (1958). General Solution of the Reactor Kinetic Equations without Feedback. Nuclear Science and Engineering, 3(4), 456-467. doi:10.13182/nse58-a25482Antonopoulos-Domis, M. (1976). Reactivity and neutron density noise excited by random rod vibration. Annals of Nuclear Energy, 3(9-10), 451-459. doi:10.1016/0306-4549(76)90030-xDemaziere, C. (2006). Analysis methods for the determination of possible unseated fuel assemblies in BWRs. International Journal of Nuclear Energy Science and Technology, 2(3), 167. doi:10.1504/ijnest.2006.010713Demazière, C. (2011). CORE SIM: A multi-purpose neutronic tool for research and education. Annals of Nuclear Energy, 38(12), 2698-2718. doi:10.1016/j.anucene.2011.06.010Demazière, C., & Andhill, G. (2005). Identification and localization of absorbers of variable strength in nuclear reactors. Annals of Nuclear Energy, 32(8), 812-842. doi:10.1016/j.anucene.2004.12.011Demazière, C., Dykin, V., & Jareteg, K. (2017). Development of a point-kinetic verification scheme for nuclear reactor applications. Journal of Computational Physics, 339, 396-411. doi:10.1016/j.jcp.2017.03.020Demazière, C., & Pázsit, I. (2009). Numerical tools applied to power reactor noise analysis. Progress in Nuclear Energy, 51(1), 67-81. doi:10.1016/j.pnucene.2008.01.010Ginestar, D., Verdú, G., Vidal, V., Bru, R., Marín, J., & Muñoz-Cobo, J. L. (1998). High order backward discretization of the neutron diffusion equation. Annals of Nuclear Energy, 25(1-3), 47-64. doi:10.1016/s0306-4549(97)00046-7Hébert, A. (1985). Application of the Hermite Method for Finite Element Reactor Calculations. Nuclear Science and Engineering, 91(1), 34-58. doi:10.13182/nse85-a17127Jonsson, A., Tran, H. N., Dykin, V., & Pázsit, I. (2012). Analytical investigation of the properties of the neutron noise induced by vibrating absorber and fuel rods. Kerntechnik, 77(5), 371-380. doi:10.3139/124.110258Kronbichler, M., & Kormann, K. (2012). A generic interface for parallel cell-based finite element operator application. Computers & Fluids, 63, 135-147. doi:10.1016/j.compfluid.2012.04.012Larsson, V., & Demazière, C. (2009). Comparative study of 2-group and diffusion theories for the calculation of the neutron noise in 1D 2-region systems. Annals of Nuclear Energy, 36(10), 1574-1587. doi:10.1016/j.anucene.2009.07.009Olmo-Juan, N., Demazière, C., Barrachina, T., Miró, R., & Verdú, G. (2019). PARCS vs CORE SIM neutron noise simulations. Progress in Nuclear Energy, 115, 169-180. doi:10.1016/j.pnucene.2019.03.041Park, J., Lee, J. H., Kim, T.-R., Park, J.-B., Lee, S. K., & Koo, I.-S. (2003). Identification of reactor internals’ vibration modes of a Korean standard PWR using structural modeling and neutron noise analysis. Progress in Nuclear Energy, 43(1-4), 177-186. doi:10.1016/s0149-1970(03)00021-0Pázsit, I. (1988). Control-rod models and vibration induced noise. Annals of Nuclear Energy, 15(7), 333-346. doi:10.1016/0306-4549(88)90081-3Pázsit, I., & Th.Analytis, G. (1980). Theoretical investigation of the neutron noise diagnostics of two-dimensional control rod vibrations in a PWR. Annals of Nuclear Energy, 7(3), 171-183. doi:10.1016/0306-4549(80)90082-1Pázsit, I., & Glöckler, O. (1983). On the Neutron Noise Diagnostics of Pressurized Water Reactor Control Rod Vibrations. I. Periodic Vibrations. Nuclear Science and Engineering, 85(2), 167-177. doi:10.13182/nse83-a27424Ravetto, P. (1997). Reactivity oscillations in a point reactor. Annals of Nuclear Energy, 24(4), 303-314. doi:10.1016/s0306-4549(96)00066-7Sunde, C., Demazière, C., & Pázsit, I. (2006). Calculation of the Neutron Noise Induced by Shell-Mode Core-Barrel Vibrations in a 1-D, Two-Group, Two-Region Slab Reactor Model. Nuclear Technology, 154(2), 129-141. doi:10.13182/nt06-1Tran, H.-N., Pázsit, I., & Nylén, H. (2015). Investigation of the ex-core noise induced by fuel assembly vibrations in the Ringhals-3 PWR. Annals of Nuclear Energy, 80, 434-446. doi:10.1016/j.anucene.2015.01.045Vidal-Ferràndiz, A., Carreño, A., Ginestar, D., & Verdú, G. (2019). A Block Arnoldi Method for the SPN Equations. International Journal of Computer Mathematics, 1-22. doi:10.1080/00207160.2019.1602768Vidal-Ferrandiz, A., Fayez, R., Ginestar, D., & Verdú, G. (2014). Solution of the Lambda modes problem of a nuclear power reactor using an h–p finite element method. Annals of Nuclear Energy, 72, 338-349. doi:10.1016/j.anucene.2014.05.026Vidal-Ferràndiz, A., Fayez, R., Ginestar, D., & Verdú, G. (2016). Moving meshes to solve the time-dependent neutron diffusion equation in hexagonal geometry. Journal of Computational and Applied Mathematics, 291, 197-208. doi:10.1016/j.cam.2015.03.040Viebach, M., Bernt, N., Lange, C., Hennig, D., & Hurtado, A. (2018). On the influence of dynamical fuel assembly deflections on the neutron noise level. Progress in Nuclear Energy, 104, 32-46. doi:10.1016/j.pnucene.2017.08.010Weinberg, A. M., & Schweinler, H. C. (1948). Theory of Oscillating Absorber in a Chain Reactor. Physical Review, 74(8), 851-863. doi:10.1103/physrev.74.85

    Noise-based core monitoring and diagnostics: overview of the cortex project

    Get PDF
    This paper gives an overview of the CORTEX project, which is a Research and Innovation Action funded by the European Union in the Euratom 2016-2017 work program, under the Horizon 2020 framework. CORTEX, which stands for CORe monitoring Techniques and EXperimental validation and demonstration, aims at developing an innovative core monitoring technique that allows detecting anomalies in nuclear reactors, such as excessive vibrations of core internals, flow blockage, coolant inlet perturbations, etc. The technique is based on primarily using the inherent fluctuations in neutron flux recorded by in-core and ex-core instrumentation (often referred to as neutron noise), from which the anomalies will be differentiated depending on their type, location and characteristics. In addition to be non-intrusive and not requiring any external perturbation of the system, the method allows the detection of operational problems at a very early stage. Proper actions could thus be taken by utilities before such problems have any adverse effect on plant safety and reliability

    METRO - The role and future perspectives of Cohesion Policy in the planning of Metropolitan Areas and Cities. Policy brief: The role of metropolitan areas in the EU cohesion policy

    Get PDF
    This policy brief focuses on the role that metropolitan area plays, and may play, in the development, management and implementation of the EU cohesion policy. The information it includes is drawn from the ESPON METRO project, and in particular from the 9 in-depth case studies that have been analysed through the project: Barcelona Metropolitan Area, Brno Metropolitan Area, Brussels-Capital Region, Metropolitan City of Florence, Metropolitan Area of Gdańsk-Gdynia-Sopot, Lisbon Metropolitan Area, Métropole de Lyon, Riga Metropolitan Area, Metropolitan City of Turin. More in detail, the provided information discusses the different levels of engagement of metropolitan areas around Europe with the different stages of the EU cohesion policy development, the various programmes and instruments that have been put in place in different contexts as well as the coordination mechanisms that, in different metropolitan areas, have been put in place to ensure a stronger coherence between metropolitan governance and policy and the EU cohesion policy. The document also reflects on the engagement of the business actors and the civil society, as well as on the role that metropolitan areas are playing in the framework of the Recovery and Resilience Facility

    Neutron Noise Fluctuations. Parcs vs Core Sim Simulations

    Get PDF
    In a nuclear reactor, even operating at full power and steady-state conditions, fluctuations are detected in the recording of any process parameter. These fluctuations (also called noise) could be of various origins, such as, turbulence, mechanical vibrations, coolant boiling, etc. The monitoring and complete comprehension of those parameters should thus allow detecting, using existing instrumentation and without introducing any external perturbation to the system, possible anomalies before they have any inadvertent effect on plant safety and availability. In order to reproduce and study the induced neutron noise in a nuclear reactor core, it is compulsory to develop suitable tools. Existing time-domain codes were originally not developed for this type of calculations. Modifications of those codes and the development of an associated intricate methodology are necessary for enabling noise calculations. This involves, in some cases, changes in the source code and the development of new auxiliary tools to ensure accurate reproductions of the core behavior under the existence of a neutron noise source. In the proposed work, the time-domain neutron diffusion code PARCS is used to model the effect of stationary perturbations representative of given neutron noise sources. In order to validate the feasibility of the time-dependent methodology thus developed, comparisons with the results of simulations performed in the frequency domain, using the CORE SIM tool, developed at Chalmers University of Technology, are performed. The development of a few test cases based on a real reactor model are undertaken as the basis for such comparisons and a methodology aimed at assessing the time-domain simulations versus the frequency-domain simulations is established. It is demonstrated that PARCS, although not primarily developed for neutron noise calculations, can reproduce neutron noise patterns for reasonable frequencies. However, it is also observed that unphysical results are occasionally obtained

    METRO - The role and future perspectives of Cohesion Policy in the planning of Metropolitan Areas and Cities. Annex I: Conceptual framework and methodology

    Get PDF
    The scope of the ESPON METRO project is rather broad, as its research positions at the intersection of a number of fields, ranging from territorial governance and spatial planning, to public administration and policy analysis and European integration studies, up to regional development studies. In order to explore the role that metropolitan areas play as catalysts and drivers of global development, as a consequence of complex processes of socioeconomic reorganisation and rescaling that have evolved through time, and with particular reference to the European Union (EU) cohesion policy, the METRO research team has framed its action and analysis within a composite and articulated conceptual and methodological framework. In particular, the latter has been shaped in order to allow the researchers engaged in the project to answer the three main policy questions animating the study: PQ1 | What role do metropolitan areas play in the development, management and implementation of the cohesion policy? PQ2 | What is the added value of the cohesion policy in the planning and implementation of metropolitan policies? PQ3 | What role does the cohesion policy play in consolidating metropolitan governance and cooperation? The conceptual and methodological framework for the project has been developed during the first months of the research, building on the materials already included in the project proposal, that were further detailed and consolidated through: A thorough consideration of previous research works on similar matters as well as of the existing scientific literature in the field of metropolitan governance and European integration and Europeanisation. The interaction with the project’s Steering Committee Members during the METRO kick-off meeting (October the 9th, 2020), the comments received in response to the Delivery n.1 and the outcomes of the Steering Committee Meeting n. 2 (November the 16th, 2020) and 3 (February the 23rd, 2021). This Annex to the Final Report presents said conceptual framework and methodology more in detail

    Neutronic Simulation of Fuel Assembly Vibrations in a Nuclear Reactor

    Full text link
    This is an Accepted Manuscript of an article published by Taylor & Francis in Nuclear Science and Engineering on 2020, available online: http://www.tandfonline.com/10.1080/00295639.2020.1756617[EN] The mechanical vibrations of core internals such as fuel assemblies (FAs) cause oscillations in the neutron flux that require in some circumstances nuclear power plants to operate at a reduced power level. This work simulates and analyzes the changes of the neutron flux throughout a nuclear core due to the oscillation of a single FA without considering thermal-hydraulic feedback. The amplitude of the FA vibration is bounded to a few millimeters, and this implies the use of fine meshes and accurate numerical solvers due to the different scales of the problem. The results of the simulations show a main oscillation of the neutron flux with the same frequency as the FA vibration along with other harmonics at multiples of the vibration frequency much smaller in amplitude. Also, this work compares time domain analysis and frequency domain analysis of the mechanical vibrations. Numerical results show a close match between these two approaches for the fundamental frequency.This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement number 754316. Also, this work has been partially supported by Spanish Ministerio de Economia y Competitividad under project BES-2015-072901 and financed with the help of Primeros Proyectos de Investigacion (PAID-06-18), Vicerrectorado de Investigacion, Innovacion y Transferencia of the Universitat Politecnica de Valencia (UPV).Vidal-Ferràndiz, A.; Carreño, A.; Ginestar Peiro, D.; Demazière, C.; Verdú Martín, GJ. (2020). Neutronic Simulation of Fuel Assembly Vibrations in a Nuclear Reactor. Nuclear Science and Engineering. 194(11):1067-1078. https://doi.org/10.1080/00295639.2020.1756617S106710781941

    A finite element method for neutron noise analysis in hexagonal reactors

    Get PDF
    [EN] The early detection of anomalies through the analysis of the neutron noise recorded by in-core and ex-core instrumentation gives the possibility to take proper actions before such problems lead to safety concerns or impact plant availability. The study of the neutron fluctuations permits detecting and differentiate anomalies depending on their type and possibly to characterize and localize such anomalies. This method is non-intrusive and does not require any external perturbation of the system. To effectively use the neutron noise for reactor diagnostics it is essential to accurately model the effects of the anomalies on the neutron field. This paper deals with the development and validation of a neutron noise simulator for reactors with different geometries. The neutron noise is obtained by solving the frequency-domain two-group neutron diffusion equation in the first order approximation. In order to solve this partial differential equation a code based on a high order finite element method is developed. The novelty of this simulator resides on the possibility of dealing with rectangular meshes in any kind of geometry, thus allowing for complex domains and any location of the perturbation. The finite element method also permits automatic refinements in the cell size (h-adaptability) and in its polynomial degree (p-adaptability) that lead to a fast convergence. In order to show the possibilities of the neutron noise simulator developed a perturbation in a hexagonal two-dimensional reactor is investigated in this paper.This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 754316. Also, this work has been partially supported by Spanish Ministerio de Economía y Competitividad under project BES-2015-072901 and financed with the help of a Primeros Proyectos de Investigacin (PAID-06-18), Vicerrectorado de Investigación, Innovación y Transferencia of the Universitat Politecnica de València (UPV).Vidal-Ferràndiz, A.; Ginestar Peiro, D.; Carreño, A.; Verdú Martín, GJ.; Demazière, C. (2021). A finite element method for neutron noise analysis in hexagonal reactors. EPJ Web of Conferences (Online). 247:1-8. https://doi.org/10.1051/epjconf/202124721007S1824

    METRO - The role and future perspectives of Cohesion Policy in the planning of Metropolitan Areas and Cities. Annex II: The role of Metropolitan areas within the EU cohesion policy

    Get PDF
    This Annex to the final Report presents and discusses in a comparative manner the evidence collected in the nine case studies that have been explored in the framework of the ESPON Targeted Analysis METRO – The role and future perspectives of cohesion policy in the planning of Metropolitan Areas and Cities (Annexes III to XI). More in detail, the document synthesizes and compares the information collected by the various research teams through the application of the project’s analytical protocol and as a consequence of their continuous interaction with the respective stakeholders. The report is organised following the three main policy questions that have been driving the analysis: PQ1 | What role do metropolitan areas and cities play in the development, management and implementation of the European Union (EU) cohesion policy? PQ2 | What is the added value of the EU cohesion policy in the planning and implementation of metropolitan policies? PQ3 | What role does the EU cohesion policy play in consolidating metropolitan governance and cooperation? These questions are answered through the comparative analysis and assessment of the territorial and institutional contexts in which the nine stakeholders involved in the projects are active: Metropolitan City of Turin (CMTo), Barcelona Metropolitan Area (AMB), Lisbon Metropolitan Area (LMA), Brno Metropolitan Area (BMA), Metropolitan Area of Gdańsk-Gdynia-Sopot (MAG), Metropolitan City of Florence (CMFi), Métropole de Lyon (MdL), Brussels-Capital Region (BCR), Riga Metropolitan Area (RMA)
    corecore