81 research outputs found

    Current use pesticides in soil and air from two agricultural sites in South Africa: implications for environmental fate and human exposure

    Get PDF
    Concerns about the possible negative impacts of current use pesticides (CUPs) for both the environment and human health have increased worldwide. However, the knowledge on the occurrence of CUPs in soil and air and the related human exposure in Africa is limited. This study investigated the presence of 30 CUPs in soil and air at two distinct agricultural sites in South Africa and estimated the human exposure and related risks to rural residents via soil ingestion and inhalation (using hazard quotients, hazard index and relative potency factors). We collected 12 soil and 14 air samples over seven days during the main pesticide application season in 2018. All samples were extracted, purified and analyzed by high-performance liquid chromatography coupled with tandem mass spectrometry. In soils, nine CUPs were found, with chlorpyrifos, carbaryl and tebuconazole having the highest concentrations (up to 63.6, 1.10 and 0.212 ng g(-1), respectively). In air, 16 CUPs were found, with carbaryl, tebuconazole and terbuthylazine having the highest levels (up to 25.0, 22.2 and 1.94 pg m(-3), respectively). Spatial differences were observed between the two sites for seven CUPs in air and two in soils. A large dominance towards the particulate phase was found for almost all CUPs, which could be related to mass transport kinetics limitations (non-equilibrium) following pesticide application. The estimated daily intake via soil ingestion and inhalation of individual pesticides ranged from 0.126 fg kg(-1) day(-1) (isoproturon) to 14.7 ng kg(-1) day(-1) (chlorpyrifos). Except for chlorpyrifos, soil ingestion generally represented a minor exposure pathway compared to inhalation (i.e. <5%). The pesticide environmental exposure largely differed between the residents of the two distinct agricultural sites in terms of levels and composition. The estimated human health risks due to soil ingestion and inhalation of pesticides were negligible although future studies should explore other relevant pathways

    Are atmospheric PBDE levels declining in central Europe? Examination of the seasonal and semi-long-term variations, gas–particle partitioning and implications for long-range atmospheric transport

    Get PDF
    This study presents multi-year monitoring data on atmospheric polybrominated diphenyl ethers (PBDEs) in central Europe. Air was sampled on a weekly basis at a background site in the central Czech Republic from 2011 to 2014 (N = 114). Σ8PBDEs (without BDE209) total (gas and particulate) concentrations ranged from 0.084 to 6.08&thinsp;pg&thinsp;m−3, while BDE209 was at 0.05–5.01&thinsp;pg&thinsp;m−3. BDE47, BDE99 and BDE183 were the major contributors to Σ8PBDEs.Overall, the atmospheric concentrations of individual PBDEs were controlled by deposition processes, meteorological parameters and long-range atmospheric transport. Regarding gas–particle partitioning, with the exception of BDE28 (gaseous) and BDE209 (particulate), all congeners were consistently detected in both phases. Clear seasonal variations with significantly higher measured particulate fraction (θmeasured) in winter compared to summer was found for all PBDEs except BDE209. For example, while the average θmeasured of BDE47 was 0.53±0.19 in winter, this was only 0.01±0.02 in summer. Similarly, for BDE99, θmeasured was 0.89±0.13 in winter, while it was only 0.12±0.08 in summer. The observed gas–particle partitioning coefficient (Kp, in m3&thinsp;µg−1) was compared with three model predictions, assuming equilibrium or a steady state. None of the models could provide a satisfactory prediction of the partitioning, suggesting the need for a universally applicable model.Statistically significant decreases of the atmospheric concentrations during 2011–2014 were found for BDE99, 100, 153 and 209. Estimated apparent atmospheric halving times for these congeners ranged from 2.8 (BDE209) to 4.8 (BDE153) years. The results suggest that photolytic debromination to lower brominated congeners may significantly influence PBDE concentration levels and patterns in the atmosphere.</p

    Seasonal variations in air concentrations of 27 organochlorine pesticides (OCPs) and 25 current-use pesticides (CUPs) across three agricultural areas of South Africa

    Get PDF
    For decades pesticides have been used in agriculture, however, the occurrence of legacy organochlorine pesticides (OCPs) and current-use pesticides (CUPs) is poorly understood in Africa. This study investigates air concentrations of OCPs and CUPs in three South African agricultural areas, their spatial/seasonal variations and mixture profiles. Between 2017 and 2018, 54 polyurethane foam-disks passive air-samplers (PUF-PAS) were positioned in three agricultural areas of the Western Cape, producing mainly apples, table grapes and wheat. Within areas, 25 CUPs were measured at two sites (farm and village), and 27 OCPs at one site (farm). Kruskal-Wallis tests investigated area differences in OCPs concentrations, and linear mixed-effect models studied differences in CUPs concentrations between areas, sites and sampling rounds. In total, 20 OCPs and 16 CUPs were detected. A median of 16 OCPs and 10 CUPs were detected per sample, making a total of 11 OCPs and 24 CUPs combinations. Eight OCPs (trans-chlordane, o,p'-/p,p'-dichlorodiphenyldichloroethylene (DDE)/dichlorodiphenyltrichloroethane (DDT), endosulfan sulfate, γ-hexachlorocyclohexane and mirex) and two CUPs (carbaryl and chlorpyrifos) were quantified in all samples. p,p'-DDE (median 0.14 ng/m(3)) and chlorpyrifos (median 0.70 ng/m(3)) showed the highest concentrations throughout the study. Several OCPs and CUPs showed different concentrations between areas and seasons, although CUPs concentrations did not differ between sites. OCPs ratios suggest ongoing chlordane use in the region, while DDT and endosulfan contamination result from past-use. Our study revealed spatial and seasonal variations of different OCPs and CUPs combinations detected in air. Further studies are needed to investigate the potential cumulative or synergistic risks of the detected pesticides

    Revolatilisation of soil-accumulated pollutants triggered by the summer monsoon in India

    Get PDF
    Persistent organic pollutants that have accumulated in soils can be remobilised by volatilisation in response to chemical equilibrium with the atmosphere. Clean air masses from the Indian Ocean, advected with the onset of the summer monsoon, are found to reduce concentrations of hexachlorocyclohexane (HCH), dichlorodiphenyltrichloroethane (DDT) and its derivatives, endosulfan and polychlorinated biphenyls (PCBs) in air at a mountain site (all in the range 5–20&thinsp;pg&thinsp;m−3) by 77&thinsp;%, 70&thinsp;%, 82&thinsp;% and 45&thinsp;%, respectively. The analysis of fugacities in soil and air suggest that the arrival of summer monsoon triggers net volatilisation or enhances ongoing revolatilisation of the now-banned chemicals HCH and PCBs from background soils in southern India. The response of the air–soil exchange was modelled using a regional air pollution model, WRF-Chem PAH/POP. The results suggest that the air is increasingly polluted during transport by the south-westerly monsoon winds across the subcontinent. Using a multidecadal multimedia mass balance model, it is found that air–surface exchange of HCH and DDT have declined since the ban of these substances from agriculture, but remobilisation of higher chlorinated PCBs may have reached a historical high, 40 years after peak emission.</p

    Deficiency of Leishmania phosphoglycans influences the magnitude but does not affect the quality of secondary (memory) anti-Leishmania immunity

    Get PDF
    Despite inducing very low IFN-γ response and highly attenuated in vivo, infection of mice with phosphoglycan (PG) deficient Leishmania major (lpg2-) induces protection against virulent L. major challenge. Here, we show that mice infected with lpg2- L. major generate Leishmania-specific memory T cells. However, in vitro and in vivo proliferation, IL-10 and IFN-γ production by lpg2- induced memory cells were impaired in comparison to those induced by wild type (WT) parasites. Interestingly, TNF recall response was comparable to WT infected mice. Despite the impaired proliferation and IFN-γ response, lpg2- infected mice were protected against virulent L. major challenge and their T cells mediated efficient infection-induced immunity. In vivo depletion and neutralization studies with mAbs demonstrated that lpg2- L. major-induced resistance was strongly dependent on IFN-γ, but independent of TNF and CD8(+) T cells. Collectively, these data show that the effectiveness of secondary anti-Leishmania immunity depends on the quality (and not the magnitude) of IFN-γ response. These observations provide further support for consideration of lpg2- L. major as a live-attenuated candidate for leishmanization in humans since it protects strongly against virulent challenge, without inducing pathology in infected animals

    A single molecule assay to probe monovalent and multivalent bonds between hyaluronan and its key leukocyte receptor CD44 under force

    Get PDF
    Glycosaminoglycans (GAGs), a category of linear, anionic polysaccharides, are ubiquitous in the extracellular space, and important extrinsic regulators of cell function. Despite the recognized significance of mechanical stimuli in cellular communication, however, only few single molecule methods are currently available to study how monovalent and multivalent GAG•protein bonds respond to directed mechanical forces. Here, we have devised such a method, by combining purpose-designed surfaces that afford immobilization of GAGs and receptors at controlled nanoscale organizations with single molecule force spectroscopy (SMFS). We apply the method to study the interaction of the GAG polymer hyaluronan (HA) with CD44, its receptor in vascular endothelium. Individual bonds between HA and CD44 are remarkably resistant to rupture under force in comparison to their low binding affinity. Multiple bonds along a single HA chain rupture sequentially and independently under load. We also demonstrate how strong non-covalent bonds, which are versatile for controlled protein and GAG immobilization, can be effectively used as molecular anchors in SMFS. We thus establish a versatile method for analyzing the nanomechanics of GAG•protein interactions at the level of single GAG chains, which provides new molecular-level insight into the role of mechanical forces in the assembly and function of GAG-rich extracellular matrices

    Enhanced Neointima Formation Following Arterial Injury in Immune Deficient Rag-1−/− Mice Is Attenuated by Adoptive Transfer of CD8+ T cells

    Get PDF
    T cells modulate neointima formation after arterial injury but the specific T cell population that is activated in response to arterial injury remains unknown. The objective of the study was to identify the T cell populations that are activated and modulate neointimal thickening after arterial injury in mice. Arterial injury in wild type C57Bl6 mice resulted in T cell activation characterized by increased CD4+CD44hi and CD8+CD44hi T cells in the lymph nodes and spleens. Splenic CD8+CD25+ T cells and CD8+CD28+ T cells, but not CD4+CD25+ and CD4+CD28+ T cells, were also significantly increased. Adoptive cell transfer of CD4+ or CD8+ T cells from donor CD8−/− or CD4−/− mice, respectively, to immune-deficient Rag-1−/− mice was performed to determine the T cell subtype that inhibits neointima formation after arterial injury. Rag-1−/− mice that received CD8+ T cells had significantly reduced neointima formation compared with Rag-1−/− mice without cell transfer. CD4+ T cell transfer did not reduce neointima formation. CD8+ T cells from CD4−/− mice had cytotoxic activity against syngeneic smooth muscle cells in vitro. The study shows that although both CD8+ T cells and CD4+ T cells are activated in response to arterial injury, adoptive cell transfer identifies CD8+ T cells as the specific and selective cell type involved in inhibiting neointima formation

    Altered Gene Expression in Early Atherosclerosis Is Blocked by Low Level Apolipoprotein E

    Get PDF
    BACKGROUND: Mice deficient in apolipoprotein E (apoE(-/-)) develop atherosclerosis. The possible linkage between expression of adhesion molecules/cofactors and atherosclerosis was probed at the level of mRNA and protein expression. The hypothesis of a linkage between changes of adhesion molecules/cofactors and atherosclerosis was tested further by suppression of aortic lesion formation in apoE(-/-) mice by expression of very low levels of transgenic apolipoprotein E. METHODOLOGY/PRINCIPAL FINDINGS: We show that at 8.5 months of age, the apoE(-/-) mice display elevated expression of mRNA for LFA-1, MAC-1, VCAM-1, ICAM-1, and for CD44, as well as MCP-1, cathepsin B, and COX-2 (but not that for eNOS) in atherosclerotic aortic arches. At earlier age, (10-13 week old) apoE(-/-) mice already display elevated expression of mRNA of CD44, LFA-1, MAC-1, VCAM-1, ICAM-1, cathepsin, and of COX-2 in lesioned aortic arches. Expressing very low levels of transgenic apolipoprotein E suppresses both aortic lesions and the expression of mRNA of LFA-1, VCAM-1, MCP-1, cathepsin B, and of ICAM-1 in ApoE(-/-) mice. We tested at the level of protein, the observations obtained for mRNA expression. CD11a (a component of LFA-1), VCAM-1 and cathepsin B expression was found to be elevated in apoE(-/-) aortas at 8-9 months; low level expression of transgenic apolipoprotein E rectifies these changes. CONCLUSIONS/SIGNIFICANCE: Atherosclerotic lesions in apoE(-/-) mice are detected as early as 4 weeks of age. Expression of low levels of apoE is shown to be both atheroprotective and to suppress these changes in key adhesion and inflammatory molecules observed in early atherosclerotic lesions
    corecore