13,458 research outputs found

    Entanglement production by quantum error correction in the presence of correlated environment

    Full text link
    We analyze the effect of a quantum error correcting code on the entanglement of encoded logical qubits in the presence of a dephasing interaction with a correlated environment. Such correlated reservoir introduces entanglement between physical qubits. We show that for short times the quantum error correction interprets such entanglement as errors and suppresses it. However for longer time, although quantum error correction is no longer able to correct errors, it enhances the rate of entanglement production due to the interaction with the environment.Comment: 7 pages, 3 figures, published versio

    Quantum Concentration Inequalities

    Get PDF
    We establish Transportation Cost Inequalities (TCIs) with respect to the quantum Wasserstein distance by introducing quantum extensions of well-known classical methods: First, we generalize the Dobrushin uniqueness condition to prove that Gibbs states of 1D commuting Hamiltonians satisfy a TCI at any positive temperature and provide conditions under which this first result can be extended to non-commuting Hamiltonians. Next, using a non-commutative version of Ollivier’s coarse Ricci curvature, we prove that high temperature Gibbs states of commuting Hamiltonians on arbitrary hypergraphs H= (V, E) satisfy a TCI with constant scaling as O(|V|). Third, we argue that the temperature range for which the TCI holds can be enlarged by relating it to recently established modified logarithmic Sobolev inequalities. Fourth, we prove that the inequality still holds for fixed points of arbitrary reversible local quantum Markov semigroups on regular lattices, albeit with slightly worsened constants, under a seemingly weaker condition of local indistinguishability of the fixed points. Finally, we use our framework to prove Gaussian concentration bounds for the distribution of eigenvalues of quasi-local observables and argue the usefulness of the TCI in proving the equivalence of the canonical and microcanonical ensembles and an exponential improvement over the weak Eigenstate Thermalization Hypothesis

    Brane World Cosmology, the CMB and the Radion

    Full text link
    Recent developments in the theory of extra dimensions have opened up avenues to confront such theories with cosmological tests. We discuss a brane-world model with a bulk scalar field, motivated by supergravity. The low-energy effective action is derived and physical constraints on the parameters of the model discussed. The cosmological evolution of the brane-world moduli is investigated and it is shown that one of the moduli is a quintessence field. The CMB predictions are computed. Finally, the possibility that the radion field in brane-worlds could be a chameleon field is investigated.Comment: 11 pages, 6 figures, to appear in the proceedings of the DPU Workshop: The Density Fluctuations in the Universe: Beyond the Inflaton Paradigm (Athens, June 2004

    The squashed entanglement of the noiseless quantum Gaussian attenuator and amplifier

    Get PDF
    We determine the maximum squashed entanglement achievable between sender and receiver of the noiseless quantum Gaussian attenuators and amplifiers and we prove that it is achieved sending half of an infinitely squeezed two-mode vacuum state. The key ingredient of the proof is a lower bound to the squashed entanglement of the quantum Gaussian states obtained applying a two-mode squeezing operation to a quantum thermal Gaussian state tensored with the vacuum state. This is the first lower bound to the squashed entanglement of a quantum Gaussian state and opens the way to determine the squashed entanglement of all quantum Gaussian channels. Moreover, we determine the classical squashed entanglement of the quantum Gaussian states above and show that it is strictly larger than their squashed entanglement. This is the first time that the classical squashed entanglement of a mixed quantum Gaussian state is determined

    Cloning transformations in spin networks without external control

    Full text link
    In this paper we present an approach to quantum cloning with unmodulated spin networks. The cloner is realized by a proper design of the network and a choice of the coupling between the qubits. We show that in the case of phase covariant cloner the XY coupling gives the best results. In the 1->2 cloning we find that the value for the fidelity of the optimal cloner is achieved, and values comparable to the optimal ones in the general N->M case can be attained. If a suitable set of network symmetries are satisfied, the output fidelity of the clones does not depend on the specific choice of the graph. We show that spin network cloning is robust against the presence of static imperfections. Moreover, in the presence of noise, it outperforms the conventional approach. In this case the fidelity exceeds the corresponding value obtained by quantum gates even for a very small amount of noise. Furthermore we show how to use this method to clone qutrits and qudits. By means of the Heisenberg coupling it is also possible to implement the universal cloner although in this case the fidelity is 10% off that of the optimal cloner.Comment: 12 pages, 13 figures, published versio

    Stochastic dynamics beyond the weak coupling limit: thermalization

    Full text link
    We discuss the structure and asymptotic long-time properties of coupled equations for the moments of a Brownian particle's momentum derived microscopically beyond the lowest approximation in the weak coupling parameter. Generalized fluctuation-dissipation relations are derived and shown to ensure convergence to thermal equilibrium at any order of perturbation theory.Comment: 6+ page

    Collective Decoherence of Nuclear Spin Clusters

    Full text link
    The problem of dipole-dipole decoherence of nuclear spins is considered for strongly entangled spin cluster. Our results show that its dynamics can be described as the decoherence due to interaction with a composite bath consisting of fully correlated and uncorrelated parts. The correlated term causes the slower decay of coherence at larger times. The decoherence rate scales up as a square root of the number of spins giving the linear scaling of the resulting error. Our theory is consistent with recent experiment reported in decoherence of correlated spin clusters.Comment: 4 pages, 4 figure

    Mitophagy contributes to endothelial adaptation to simulated microgravity

    Get PDF
    Exposure to real or simulated microgravity is sensed as a stress by mammalian cells, which activate a complex adaptive response. In human primary endothelial cells, we have recently shown the sequential intervention of various stress proteins which are crucial to prevent apoptosis and maintain cell function. We here demonstrate that mitophagy contributes to endothelial adaptation to gravitational unloading. After 4 and 10 d of exposure to simulated microgravity in the rotating wall vessel, the amount of BCL2 interacting protein 3, a marker of mitophagy, is increased and, in parallel, mitochondrial content, oxygen consumption, and maximal respiratory capacity are reduced, suggesting the acquisition of a thrifty phenotype to meet the novel metabolic challenges generated by gravitational unloading. Moreover, we suggest that microgravity induced-disorganization of the actin cytoskeleton triggers mitophagy, thus creating a connection between cytoskeletal dynamics and mitochondrial content upon gravitational unloading
    • …
    corecore