1,778 research outputs found
Axion Like Particles and the Inverse Seesaw Mechanism
Light pseudoscalars known as axion like particles (ALPs) may be behind
physical phenomena like the Universe transparency to ultra-energetic photons,
the soft -ray excess from the Coma cluster, and the 3.5 keV line. We
explore the connection of these particles with the inverse seesaw (ISS)
mechanism for neutrino mass generation. We propose a very restrictive setting
where the scalar field hosting the ALP is also responsible for generating the
ISS mass scales through its vacuum expectation value on gravity induced
nonrenormalizable operators. A discrete gauge symmetry protects the theory from
the appearance of overly strong gravitational effects and discrete anomaly
cancellation imposes strong constraints on the order of the group. The
anomalous U symmetry leading to the ALP is an extended lepton number and
the protective discrete symmetry can be always chosen as a subgroup of a
combination of the lepton number and the baryon number.Comment: 29pp. v4: published version with erratum. Conclusions unchange
Phase diagram and magnetic properties of LaCaMnO compound for
In this article a detailed study of LaCaMnO () phase diagram using powder x-ray diffraction and magnetization
measurements is presented. Unfortunately, in the related literature no properly
characterized samples have been used, with consequence the smearing of the real
physics in this complicated system. As the present results reveal, there are
two families of samples. The first family concerns samples prepared in
atmosphere ( Atm) which are all ferromagnetic with Curie
temperature rising with . The second family concerns samples, where a post
annealing in nearly zero oxygen partial pressure is applied. These samples show
a canted antiferromagnetic structure for below , while
for an unconventional ferromagnetic insulated phase is
present below . The most important difference between nonstoichiometric
and stoichiometric samples concerning the magnetic behavior, is the anisotropy
in the exchange interactions, in the stoichiometric samples putting forward the
idea that a new orbital ordered phase is responsible for the ferromagnetic
insulating regime in the LaCaMnO compound
Occurrence of Toxic Cyanobacterial Blooms in Rio de la Plata Estuary, Argentina: Field Study and Data Analysis
Water samples were collected during 3 years (2004–2007) at three sampling sites in the Rio de la Plata estuary. Thirteen biological, physical, and chemical parameters were determined on the water samples. The presence of microcystin-LR in the reservoir samples, and also in domestic water samples, was confirmed and quantified. Microcystin-LR concentration ranged between 0.02 and 8.6 μg.L−1. Principal components analysis was used to identify the factors promoting cyanobacteria growth. The proliferation of cyanobacteria was accompanied by the presence of high total and fecal coliforms bacteria (>1500 MNP/100 mL), temperature ≥25°C, and total phosphorus content ≥1.24 mg·L−1. The observed fluctuating patterns of Microcystis aeruginosa, total coliforms, and Microcystin-LR were also described by probabilistic models based on the log-normal and extreme value distributions. The sampling sites were compared in terms of the distribution parameters and the probability of observing high concentrations for Microcystis aeruginosa, total coliforms, and microcystin-LR concentration
Formation of collective spins in frustrated clusters
Using magnetization, specific heat and neutron scattering measurements, as
well as exact calculations on realistic models, the magnetic properties of the
\lacuvo compound are characterized on a wide temperature range. At high
temperature, this oxide is well described by strongly correlated atomic =1/2
spins while decreasing the temperature it switches to a set of weakly
interacting and randomly distributed entangled pseudo spins and
. These pseudo-spins are built over frustrated clusters, similar to
the kagom\'e building block, at the vertices of a triangular superlattice, the
geometrical frustration intervening then at different scales.Comment: 10 page
Structure and magnetic order in Fe2+xV1-xAl
We present a detailed structural investigation via neutron diffraction of
differently heat treated samples Fe2VAl and Fe2+xV1-xAl. Moreover, the magnetic
behaviour of these materials is studied by means of mSR and
Mossbauer-experiments. Our structural investigation indicates that quenched
Fe2VAl, exhibiting the previously reported "Kondo insulating like" behaviour,
is off-stoichiometric (6%) in its Al content. Slowly cooled Fe2VAl is
structurally better ordered and stoichiometric, and the microscopic magnetic
probes establish long range ferromagnetic order below TC = 13K, consistent with
results from bulk experiments. The magnetic state can be modelled as being
generated by diluted magnetic ions in a non-magnetic matrix. Quantitatively,
the required number of magnetic ions is too large as to be explained by a model
of Fe/V site exchange. We discuss the implications of our findings for the
ground state properties of Fe2VAl, in particular with respect to the role of
crystallographic disorder.Comment: accepted for publication in J. Phys.: Condens. Matte
Dark photon production through positron annihilation in beam-dump experiments
High energy positron annihilation is a viable mechanism to produce dark
photons (). This reaction plays a significant role in beam-dump
experiments using experiments using multi-GeV electron-beams on thick targets
by enhancing the sensitivity to production. The positrons produced
by the electromagnetic shower can produce an via non-resonant () and resonant ()
annihilation on atomic electrons. For visible decays, the contribution of
resonant annihilation results in a larger sensitivity with respect to limits
derived by the commonly used -strahlung in certain kinematic regions.
When included in the evaluation of the E137 beam-dump experiment reach,
positron annihilation pushes the current limit on downwards by a
factor of two in the range 33 MeV/c MeV/c.Comment: 9 pages, 7 figure
Magnetic structure of Yb2Pt2Pb: Ising moments on the Shastry-Sutherland lattice.
Neutron diffraction measurements were carried out on single crystals and powders of Yb2Pt2Pb, where Yb moments form two interpenetrating planar sublattices of orthogonal dimers, a geometry known as Shastry-Sutherland lattice, and are stacked along the c axis in a ladder geometry. Yb2Pt2Pb orders antiferromagnetically at TN=2.07K, and the magnetic structure determined from these measurements features the interleaving of two orthogonal sublattices into a 5×5×1 magnetic supercell that is based on stripes with moments perpendicular to the dimer bonds, which are along (110) and (−110). Magnetic fields applied along (110) or (−110) suppress the antiferromagnetic peaks from an individual sublattice, but leave the orthogonal sublattice unaffected, evidence for the Ising character of the Yb moments in Yb2Pt2Pb that is supported by point charge calculations. Specific heat, magnetic susceptibility, and electrical resistivity measurements concur with neutron elastic scattering results that the longitudinal critical fluctuations are gapped with ΔE≃0.07meV
Efficacy and safety of nilotinib in patients with KIT-mutated metastatic or inoperable melanoma: final results from the global, single-arm, phase II TEAM trial
Background: The single-arm, phase II Tasigna Efficacy in Advanced Melanoma (TEAM) trial evaluated the KIT-selective tyrosine kinase inhibitor nilotinib in patients with KIT-mutated advanced melanoma without prior KIT inhibitor treatment. Patients and methods: Forty-two patients with KIT-mutated advanced melanoma were enrolled and treated with nilotinib 400mg twice daily. TEAM originally included a comparator arm of dacarbazine (DTIC)-treated patients;the design was amended to a single-arm trial due to an observed low number of KIT-mutated melanomas. Thirteen patients were randomized to DTIC before the protocol amendment removing this study arm. The primary endpoint was objective response rate (ORR), determined according to Response Evaluation Criteria In Solid Tumors. Results: ORR was 26.2% (n = 11/42;95% CI, 13.9%-42.0%), sufficient to reject the null hypothesis (ORR <= 10%). All observed responses were partial responses (PRs;median response duration, 7.1 months). Twenty patients (47.6%) had stable disease and 10 (23.8%) had progressive disease;1 (2.4%) response was unknown. Ten of the 11 responding patients had exon 11 mutations, four with an L576P mutation. The median progression-free survival and overall survival were 4.2 and 18.0 months, respectively. Three of the 13 patients on DTIC achieved a PR, and another patient had a PR following switch to nilotinib. Conclusion: Nilotinib activity in patients with advanced KIT-mutated melanoma was similar to historical data from imatinib-treated patients. DTIC treatment showed potential activity, although the low patient number limits interpretation. Similar to previously reported results with imatinib, nilotinib showed greater activity among patients with an exon 11 mutation, including L576P, suggesting that nilotinib may be an effective treatment option for patients with specific KIT mutations
- …