222 research outputs found

    Antioxidant, antibacterial, cytotoxic, and apoptotic activity of stem bark extracts of Cephalotaxus griffithii Hook. f

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Cephalotaxus </it>spp. are known to possess various therapeutic potentials. <it>Cephalotaxus griffithii</it>, however, has not been evaluated for its biological potential. The reason may be the remoteness and inaccessibility of the habitat where it is distributed. The main aim of this study was to: (1) evaluate multiple biological potentials of stem bark of <it>C. griffithii</it>, and (2) identify solvent extract of stem bark of <it>C. griffithii </it>to find the one with the highest specific biological activity.</p> <p>Methods</p> <p>Dried powder of stem bark of <it>C. griffithii </it>was exhaustively extracted serially by soaking in petroleum ether, acetone and methanol to fractionate the chemical constituents into individual fractions or extracts. The extracts were tested for total phenolic and flavonoid content, antioxidant (DPPH radical scavenging, superoxide radical scavenging, and reducing power models), antibacterial (disc diffusion assay on six bacterial strains), cytotoxic (MTT assay on HeLa cells), and apoptotic activity (fluorescence microscopy, DNA fragmentation assay, and flow cytometry on HeLa cells).</p> <p>Results</p> <p>Among the three extracts of stem bark of <it>C. griffithii</it>, the acetone extract contained the highest amount of total phenolics and flavonoids and showed maximum antioxidant, antibacterial, cytotoxic (IC<sub>50 </sub>of 35.5 ± 0.6 μg/ml; P < 0.05), and apoptotic (46.3 ± 3.6% sub-G0/G1 population; P < 0.05) activity, followed by the methanol and petroleum ether extracts. However, there was no significant difference observed in IC<sub>50 </sub>values (DPPH scavenging assay) of the acetone and methanol extracts and the positive control (ascorbic acid). In contrast, superoxide radical scavenging assay-based antioxidant activity (IC<sub>50</sub>) of the acetone and methanol extracts was significantly lower than the positive control (P < 0.05). Correlation analysis suggested that phenolic and flavonoid content present in stem bark of <it>C. griffithii </it>extracts was responsible for the high antioxidant, cytotoxic, and apoptotic activity (P < 0.05).</p> <p>Conclusions</p> <p>Stem bark of <it>C. griffithii </it>has multiple biological effects. These results call for further chemical characterization of acetone extract of stem bark of <it>C. griffithii </it>for specific bioactivity.</p

    Baicalin administration attenuates hyperglycemia-induced malformation of cardiovascular system

    Get PDF
    In this study, the effects of Baicalin on the hyperglycemia-induced cardiovascular malformation during embryo development were investigated. Using early chick embryos, an optimal concentration of Baicalin (6 μM), was identified which could prevent hyperglycemia-induced cardiovascular malformation of embryos. Hyperglycemia-enhanced cell apoptosis was reduced in embryos and HUVECs in the presence of Baicalin. Hyperglycemia-induced excessive ROS production was inhibited when Baicalin was administered. Analyses of SOD, GSH-Px, MAQE and GABAA suggested Baicalin plays an antioxidant role in chick embryos possibly through suppression of outwardly rectifying Cl(-) in the high-glucose microenvironment. In addition, hyperglycemia-enhanced autophagy fell in the presence of Baicalin, through affecting the ubiquitin of p62 and accelerating autophagy flux. Both Baicalin and Vitamin C could decrease apoptosis, but CQ did not, suggesting autophagy to be a protective function on the cell survival. In mice, Baicalin reduced the elevated blood glucose level caused by streptozotocin (STZ). Taken together, these data suggest that hyperglycemia-induced embryonic cardiovascular malformation can be attenuated by Baicalin administration through suppressing the excessive production of ROS and autophagy. Baicalin could be a potential candidate drug for women suffering from gestational diabetes mellitus

    Effects of controlled diesel exhaust exposure on apoptosis and proliferation markers in bronchial epithelium – an in vivo bronchoscopy study on asthmatics, rhinitics and healthy subjects

    No full text
    BackgroundEpidemiological evidence demonstrates that exposure to traffic-derived pollution worsens respiratory symptoms in asthmatics, but controlled human exposure studies have failed to provide a mechanism for this effect. Here we investigated whether diesel exhaust (DE) would induce apoptosis or proliferation in the bronchial epithelium in vivo and thus contribute to respiratory symptoms.MethodsModerate (n?=?16) and mild (n?=?16) asthmatics, atopic non-asthmatic controls (rhinitics) (n?=?13) and healthy controls (n?=?21) were exposed to filtered air or DE (100 ?g/m 3 ) for 2 h, on two separate occasions. Bronchial biopsies were taken 18 h post-exposure and immunohistochemically analysed for pro-apoptotic and anti-apoptotic proteins (Bad, Bak, p85 PARP, Fas, Bcl-2) and a marker of proliferation (Ki67). Positive staining was assessed within the epithelium using computerized image analysis.ResultsNo evidence of epithelial apoptosis or proliferation was observed in healthy, allergic or asthmatic airways following DE challenge.ConclusionIn the present study, we investigated whether DE exposure would affect markers of proliferation and apoptosis in the bronchial epithelium of asthmatics, rhinitics and healthy controls, providing a mechanistic basis for the reported increased airway sensitivity in asthmatics to air pollutants. In this first in vivo exposure investigation, we found no evidence of diesel exhaust-induced effects on these processes in the subject groups investigated

    WACCM-D Whole Atmosphere Community Climate Model with D-region ion chemistry

    Get PDF
    Energetic particle precipitation (EPP) and ion chemistry affect the neutral composition of the polar middle atmosphere. For example, production of odd nitrogen and odd hydrogen during strong events can decrease ozone by tens of percent. However, the standard ion chemistry parameterization used in atmospheric models neglects the effects on some important species, such as nitric acid. We present WACCM-D, a variant of the Whole Atmosphere Community Climate Model, which includes a set of lower ionosphere (D-region) chemistry: 307 reactions of 20 positive ions and 21 negative ions. We consider realistic ionization scenarios and compare the WACCM-D results to those from the Sodankylä Ion and Neutral Chemistry (SIC), a state-of-the-art 1-D model of the D-region chemistry. We show that WACCM-D produces well the main characteristics of the D-region ionosphere, as well as the overall proportion of important ion groups, in agreement with SIC. Comparison of ion concentrations shows that the WACCM-D bias is typically within ±10% or less below 70 km. At 70–90 km, when strong altitude gradients in ionization rates and/or ion concentrations exist, the bias can be larger for some groups but is still within tens of percent. Based on the good agreement overall and the fact that part of the differences are caused by different model setups, WACCM-D provides a state-of-the-art global representation of D-region ion chemistry and is therefore expected to improve EPP modeling considerably. These improvements are demonstrated in a companion paper by Andersson et al

    Increased Anion Channel Activity Is an Unavoidable Event in Ozone-Induced Programmed Cell Death

    Get PDF
    Ozone is a major secondary air pollutant often reaching high concentrations in urban areas under strong daylight, high temperature and stagnant high-pressure systems. Ozone in the troposphere is a pollutant that is harmful to the plant. generation by salicylic and abscisic acids. Anion channel activation was also shown to promote the accumulation of transcripts encoding vacuolar processing enzymes, a family of proteases previously reported to contribute to the disruption of vacuole integrity observed during programmed cell death.-induced programmed cell death. Because ion channels and more specifically anion channels assume a crucial position in cells, an understanding about the underlying role(s) for ion channels in the signalling pathway leading to programmed cell death is a subject that warrants future investigation

    Mouse models of breast cancer metastasis

    Get PDF
    Metastatic spread of cancer cells is the main cause of death of breast cancer patients, and elucidation of the molecular mechanisms underlying this process is a major focus in cancer research. The identification of appropriate therapeutic targets and proof-of-concept experimentation involves an increasing number of experimental mouse models, including spontaneous and chemically induced carcinogenesis, tumor transplantation, and transgenic and/or knockout mice. Here we give a progress report on how mouse models have contributed to our understanding of the molecular processes underlying breast cancer metastasis and on how such experimentation can open new avenues to the development of innovative cancer therapy

    Gender and Status Offending: Judicial Paternalism in Juvenile Justice Processing

    Get PDF
    This study examines the relationship between gender and juvenile justice processing outcomes for status offenders. The feminist criminological concept of judicial paternalism suggests that official justice systems, as gendered institutions with traditional patriarchal norms, will treat delinquent girls differently than delinquent boys. This paternalistic effect should be especially prevalent for status offenses, which are used to enforce institutional (parental, school, civic, parochial) authority. Using 1999-2001 juvenile processing data for 3,329 status offense referrals to the Oklahoma Office of Juvenile Affairs (N = 3,329) and controlling for age, race, prior history, type of status offense, and measures of social class and urban environment, our results indicate that (a) girls outnumber boys among status offenders, (b) girls are more likely than boys to have their petitions filed for review, (c) girls are less likely than boys to be adjudicated guilty, and (d) girls are just as likely as boys to receive an incarcerated custody sentence as opposed to probation. We argue that these results illustrate the manifestation of the juvenile justice system as a gendered institution in which the adjudication of status offenders reflects judicial paternalism.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    The Na+/H+ Exchanger Controls Deoxycholic Acid-Induced Apoptosis by a H+-Activated, Na+-Dependent Ionic Shift in Esophageal Cells

    Get PDF
    Apoptosis resistance is a hallmark of cancer cells. Typically, bile acids induce apoptosis. However during gastrointestinal (GI) tumorigenesis the cancer cells develop resistance to bile acid-induced cell death. To understand how bile acids induce apoptosis resistance we first need to identify the molecular pathways that initiate apoptosis in response to bile acid exposure. In this study we examined the mechanism of deoxycholic acid (DCA)-induced apoptosis, specifically the role of Na+/H+ exchanger (NHE) and Na+ influx in esophageal cells. In vitro studies revealed that the exposure of esophageal cells (JH-EsoAd1, CP-A) to DCA (0.2 mM -0.5 mM) caused lysosomal membrane perturbation and transient cytoplasmic acidification. Fluorescence microscopy in conjunction with atomic absorption spectrophotometry demonstrated that this effect on lysosomes correlated with influx of Na+, subsequent loss of intracellular K+, an increase of Ca2+ and apoptosis. However, ethylisopropyl-amiloride (EIPA), a selective inhibitor of NHE, prevented Na+, K+ and Ca2+ changes and caspase 3/7 activation induced by DCA. Ouabain and amphotericin B, two drugs that increase intracellular Na+ levels, induced similar changes as DCA (ion imbalance, caspase3/7 activation). On the contrary, DCA-induced cell death was inhibited by medium with low a Na+ concentrations. In the same experiments, we exposed rat ileum ex-vivo to DCA with or without EIPA. Severe tissue damage and caspase-3 activation was observed after DCA treatment, but EIPA almost fully prevented this response. In summary, NHE-mediated Na+ influx is a critical step leading to DCA-induced apoptosis. Cells tolerate acidification but evade DCA-induced apoptosis if NHE is inhibited. Our data suggests that suppression of NHE by endogenous or exogenous inhibitors may lead to apoptosis resistance during GI tumorigenesis

    YopJ-Induced Caspase-1 Activation in Yersinia-Infected Macrophages: Independent of Apoptosis, Linked to Necrosis, Dispensable for Innate Host Defense

    Get PDF
    Yersinia outer protein J (YopJ) is a type III secretion system (T3SS) effector of pathogenic Yersinia (Yersinia pestis, Yersinia enterocolitica and Yersinia pseudotuberculosis) that is secreted into host cells. YopJ inhibits survival response pathways in macrophages, causing cell death. Allelic variation of YopJ is responsible for differential cytotoxicity in Yersinia strains. YopJ isoforms in Y. enterocolitica O:8 (YopP) and Y. pestis KIM (YopJKIM) strains have high cytotoxic activity. In addition, YopJKIM-induced macrophage death is associated with caspase-1 activation and interleukin-1β (IL-1β secretion. Here, the mechanism of YopJKIM-induced cell death, caspase-1 activation, and IL-1β secretion in primary murine macrophages was examined. Caspase-3/7 activity was low and the caspase-3 substrate poly (ADP-ribose) polymerase (PARP) was not cleaved in Y. pestis KIM5-infected macrophages. In addition, cytotoxicity and IL-1β secretion were not reduced in the presence of a caspase-8 inhibitor, or in B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax)/Bcl-2 homologous antagonist/killer (Bak) knockout macrophages, showing that YopJKIM-mediated cell death and caspase-1 activation occur independent of mitochondrial-directed apoptosis. KIM5-infected macrophages released high mobility group protein B1 (HMGB1), a marker of necrosis, and microscopic analysis revealed that necrotic cells contained active caspase-1, indicating that caspase-1 activation is associated with necrosis. Inhibitor studies showed that receptor interacting protein 1 (RIP1) kinase and reactive oxygen species (ROS) were not required for cytotoxicity or IL-β release in KIM5-infected macrophages. IL-1β secretion was reduced in the presence of cathepsin B inhibitors, suggesting that activation of caspase-1 requires cathepsin B activity. Ectopically-expressed YopP caused higher cytotoxicity and secretion of IL-1β in Y. pseudotuberculosis-infected macrophages than YopJKIM. Wild-type and congenic caspase 1 knockout C57BL/6 mice were equally susceptible to lethal infection with Y. pseudotuberculosis ectopically expressing YopP. These data suggest that YopJ-induced caspase-1 activation in Yersinia-infected macrophages is a downstream consequence of necrotic cell death and is dispensable for innate host resistance to a strain with enhanced cytotoxicity
    corecore