196 research outputs found
Subarcsecond Imaging of the NGC 6334 I(N) Protocluster: Two Dozen Compact Sources and a Massive Disk Candidate
Using the SMA and VLA, we have imaged the massive protocluster NGC6334I(N) at
high angular resolution (0.5"~650AU) from 6cm to 0.87mm, detecting 18 new
compact continuum sources. Three of the new sources are coincident with
previously-identified water masers. Together with the previously-known sources,
these data bring the number of likely protocluster members to 25 for a
protostellar density of ~700 pc^-3. Our preliminary measurement of the
Q-parameter of the minimum spanning tree is 0.82 -- close to the value for a
uniform volume distribution. All of the (nine) sources with detections at
multiple frequencies have SEDs consistent with dust emission, and two (SMA1b
and SMA4) also have long wavelength emission consistent with a central
hypercompact HII region. Thermal spectral line emission, including CH3CN, is
detected in six sources: LTE model fitting of CH3CN(J=12-11) yields
temperatures of 72-373K, confirming the presence of multiple hot cores. The
fitted LSR velocities range from -3.3 to -7.0 km/s, with an unbiased mean
square deviation of 2.05 km/s, implying a dynamical mass of 410+-260 Msun for
the protocluster. From analysis of a wide range of hot core molecules, the
kinematics of SMA1b are consistent with a rotating, infalling Keplerian disk of
diameter 800AU and enclosed mass of 10-30 Msun that is perpendicular (within 1
degree) to the large-scale bipolar outflow axis. A companion to SMA1b at a
projected separation of 0.45" (590AU; SMA1d), which shows no evidence of
spectral line emission, is also confirmed. Finally, we detect one 218.440GHz
and several 229.7588GHz Class-I methanol masers.Comment: 54 pages, 11 figures. Accepted for publication in The Astrophysical
Journal. Version 2: Keywords updated, and three "in press" citations updated
to journal reference. Version 3: corrected the error in the quantum numbers
of the 218 GHz methanol transition in the text and in Table 8. For a PDF
version with full-resolution figures, see
http://www.cv.nrao.edu/~thunter/papers/ngc6334in2014.pd
Near-Infrared H2 and Continuum Survey of Extended Green Objects
The Spitzer GLIMPSE survey has revealed a number of "Extended Green Objects"
(EGOs) which display extended emission at 4.5 micron. These EGOs are potential
candidates for high mass protostellar outflows. We have used high resolution (<
1") H2 1-0 S(1) line, K, and H-band images from the United Kingdom Infrared
Telescope to study 34 EGOs to investigate their nature. We found that 12 EGOs
exhibit H2 outflows (two with chains of H2 knotty structures; five with
extended H2 bipolar structures; three with extended H2 lobes; two with pairs of
H2 knots). In the 12 EGOs with H2 outflows, three of them exhibit similar
morphologies between the 4.5 micron and H2 emission. However, the remaining 9
EGOs show that the H2 features are more extended than the continuum features,
and the H2 emission is seldom associated with continuum emission. Furthermore,
the morphologies of the near-infrared continuum and 4.5 micron emission are
similar to each other for those EGOs with K-band emission, implying that at
least a part of the IRAC-band continuum emission of EGOs comes from scattered
light from the embedded YSOs.Comment: accepted for publication in ApJ
Multiwavelength Observations of Massive Stellar Cluster Candidates in the Galaxy
The Galaxy appears to be richer in young, massive stellar clusters than
previously known, due to advances in infrared surveys which have uncovered
deeply embedded regions of star formation. Young, massive clusters can
significantly impact the surrounding interstellar medium (ISM) and hence radio
observations can also be an important tracer of their activity. Several hundred
cluster candidates are now known by examining survey data. Here we report on
multiwavelength observations of six of these candidates in the Galaxy. We
carried out 4.9 and 8.5 GHz VLA observations of the radio emission associated
with these clusters to obtain the physical characteristics of the surrounding
gas, including the Lyman continuum photon flux and ionized gas mass. Spitzer
Infrared Array Camera observations were also made of these regions, and provide
details on the stellar population as well as the dust continuum and polycyclic
aromatic hydrocarbon emission. When compared to the known young, massive
clusters in the Galaxy, the six cluster candidates have less powerful Lyman
ionizing fluxes and ionize less of the H II mass in the surrounding ISM.
Therefore, these cluster candidates appear to be more consistent with
intermediate-mass clusters (10^3-10^4 Msun).Comment: 39 pages, 20 figures. Accepted in the Astronomical Journal; to be
published Fall 201
First Results from a 1.3 cm EVLA Survey of Massive Protostellar Objects: G35.03+0.35
We have performed a 1.3 centimeter survey of 24 massive young stellar objects
(MYSOs) using the Expanded Very Large Array (EVLA). The sources in the sample
exhibit a broad range of massive star formation signposts including Infrared
Dark Clouds (IRDCs), UCHII regions, and extended 4.5 micron emission in the
form of Extended Green Objects (EGOs). In this work, we present results for
G35.03+0.35 which exhibits all of these phenomena. We simultaneously image the
1.3 cm ammonia (1,1) through (6,6) inversion lines, four methanol transitions,
two H recombination lines, plus continuum at 0.05 pc resolution. We find three
areas of thermal ammonia emission, two within the EGO (designated the NE and SW
cores) and one toward an adjacent IRDC. The NE core contains an UCHII region
(CM1) and a candidate HCHII region (CM2). A region of non-thermal, likely
masing ammonia (3,3) and (6,6) emission is coincident with an arc of 44 GHz
methanol masers. We also detect two new 25 GHz Class I methanol masers. A
complementary Submillimeter Array 1.3 mm continuum image shows that the
distribution of dust emission is similar to the lower-lying ammonia lines, all
peaking to the NW of CM2, indicating the likely presence of an additional MYSO
in this protocluster. By modeling the ammonia and 1.3 mm continuum data, we
obtain gas temperatures of 20-220 K and masses of 20-130 solar. The diversity
of continuum emission properties and gas temperatures suggest that objects in a
range of evolutionary states exist concurrently in this protocluster.Comment: To appear in Astrophysical Journal Letters Special Issue on the EVLA.
16 pages, 3 figures. Includes the complete version of Figure 3, which was
unable to fit into the journal article due to the number of panel
The Protocluster G18.67+0.03: A Test Case for Class I Methanol Masers as Evolutionary Indicators for Massive Star Formation
We present high angular resolution Submillimeter Array (SMA) and Karl G.
Jansky Very Large Array (VLA) observations of the massive protocluster
G18.67+0.03. Previously targeted in maser surveys of GLIMPSE Extended Green
Objects (EGOs), this cluster contains three Class I methanol maser sources,
providing a unique opportunity to test the proposed role of Class I masers as
evolutionary indicators for massive star formation. The millimeter observations
reveal bipolar molecular outflows, traced by 13CO(2-1) emission, associated
with all three Class I maser sources. Two of these sources (including the EGO)
are also associated with 6.7 GHz Class II methanol masers; the Class II masers
are coincident with millimeter continuum cores that exhibit hot core line
emission and drive active outflows, as indicated by the detection of SiO(5-4).
In these cases, the Class I masers are coincident with outflow lobes, and
appear as clear cases of excitation by active outflows. In contrast, the third
Class I source is associated with an ultracompact HII region, and not with
Class II masers. The lack of SiO emission suggests the 13CO outflow is a relic,
consistent with its longer dynamical timescale. Our data show that massive
young stellar objects associated only with Class I masers are not necessarily
young, and provide the first unambiguous evidence that Class I masers may be
excited by both young (hot core) and older (UC HII) MYSOs within the same
protocluster.Comment: Astrophysical Journal Letters, accepted. emulateapj, 7 pages
including 4 figures and 1 table. Figures compressed. v2: coauthor affiliation
updated, emulateapj versio
Digging into NGC 6334I(N): Multiwavelength Imaging of a Massive Protostellar Cluster
We present a high-resolution, multi-wavelength study of the massive
protostellar cluster NGC 6334I(N) that combines new spectral line data from the
Submillimeter Array (SMA) and VLA with a reanalysis of archival VLA continuum
data, 2MASS and Spitzer images. As shown previously, the brightest 1.3 mm
source SMA1 contains substructure at subarcsecond resolution, and we report the
first detection of SMA1b at 3.6 cm along with a new spatial component at 7 mm
(SMA1d). We find SMA1 (aggregate of sources a, b, c, and d) and SMA4 to be
comprised of free-free and dust components, while SMA6 shows only dust
emission. Our 1.5" resolution 1.3 mm molecular line images reveal substantial
hot-core line emission toward SMA1 and to a lesser degree SMA2. We find CH3OH
rotation temperatures of 165\pm 9 K and 145\pm 12 K for SMA1 and SMA2,
respectively. We estimate a diameter of 1400 AU for the SMA1 hot core emission,
encompassing both SMA1b and SMA1d, and speculate that these sources comprise a
>800 AU separation binary that may explain the previously-suggested precession
of the outflow emanating from the SMA1 region. The LSR velocities of SMA1,
SMA2, and SMA4 all differ by 1-2 km/s. Outflow activity from SMA1, SMA2, SMA4,
and SMA6 is observed in several molecules including SiO(5--4) and IRAC 4.5
micron emission; 24 micron emission from SMA4 is also detected. Eleven water
maser groups are detected, eight of which coincide with SMA1, SMA2, SMA4, and
SMA6. We also detect a total of 83 Class I CH3OH 44GHz maser spots which likely
result from the combined activity of many outflows. Our observations paint the
portrait of multiple young hot cores in a protocluster prior to the stage where
its members become visible in the near-infrared.Comment: Accepted to ApJ, 24 pages, a full high resolution version is
available at http://www.cv.nrao.edu/~cbrogan/ms.long.pd
A Class I and Class II Methanol Maser Survey of Extended Green Objects (EGOs) from the GLIMPSE Survey
We present the results of a high angular resolution Very Large Array (VLA)
Class I 44 GHz and Class II 6.7 GHz methanol maser survey of a sample of ~20
massive young stellar object (MYSO) outflow candidates selected on the basis of
extended 4.5 micron emission in Spitzer Galactic Legacy Infrared Mid-Plane
Survey Extraordinaire (GLIMPSE) images. These 4.5 micron-selected candidates
are referred to as extended green objects (EGOs), for the common coding of this
band as green in three-color IRAC images. The detection rate of 6.7 GHz Class
II methanol masers, which are associated exclusively with massive YSOs, towards
EGOs is greater than ~64%--nearly double the detection rate of surveys using
other MYSO selection criteria. The detection rate of Class I 44 GHz methanol
masers, which trace molecular outflows, is ~89% towards EGOs associated with
6.7 GHz methanol masers. The two types of methanol masers exhibit different
spatial distributions: 6.7 GHz masers are centrally concentrated and usually
coincide with 24 micron emission, while 44 GHz masers are widely distributed
and generally trace diffuse 4.5 micron features. We also present results of a
complementary James Clerk Maxwell Telescope (JCMT) single-pointing molecular
line survey of EGOs in the outflow tracers HCO+(3-2) and SiO(5-4). The HCO+
line profiles and high SiO detection rate (90%) are indicative of the presence
of active outflows. No 44 GHz continuum emission is detected at the 5 mJy/beam
(5 sigma) level towards 95% of EGOs surveyed, excluding bright ultracompact HII
regions as powering sources for the 4.5 micron outflows. The results of our
surveys constitute strong evidence that EGOs are young, massive YSOs, with
active outflows, presumably powered by ongoing accretion.Comment: Accepted, ApJ. 73 pages, 5 figures, plus full content of two online
figure sets and two online-only data tables. Version with full resolution
figures is available at
http://www.astro.wisc.edu/glimpse/EGO_methanol_maser_surve
VLA Survey of Dense Gas in Extended Green Objects: Prevalence of 25 GHz Methanol Masers
We present resolution Very Large Array (VLA) observations of four
CHOH - 25~GHz transitions (=3, 5, 8, 10) along with 1.3~cm
continuum toward 20 regions of active massive star formation containing
Extended Green Objects (EGOs), 14 of which we have previously studied with the
VLA in the Class~I 44~GHz and Class~II 6.7~GHz maser lines (Cyganowski et al.
2009). Sixteen regions are detected in at least one 25~GHz line (=5), with
13 of 16 exhibiting maser emission. In total, we report 34 new sites of
CHOH maser emission and ten new sites of thermal CHOH emission,
significantly increasing the number of 25~GHz Class I CHOH masers observed
at high angular resolution. We identify probable or likely maser counterparts
at 44~GHz for all 15 of the 25~GHz masers for which we have complementary data,
providing further evidence that these masers trace similar physical conditions
despite uncorrelated flux densities. The sites of thermal and maser emission of
CHOH are both predominantly associated with the 4.5 m emission from
the EGO, and the presence of thermal CHOH emission is accompanied by 1.3~cm
continuum emission in 9 out of 10 cases. Of the 19 regions that exhibit 1.3~cm
continuum emission, it is associated with the EGO in 16 cases (out of a total
of 20 sites), 13 of which are new detections at 1.3~cm. Twelve of the 1.3~cm
continuum sources are associated with 6.7~GHz maser emission and likely trace
deeply-embedded massive protostars
A Water Maser and Ammonia Survey of GLIMPSE Extended Green Objects (EGOs)
We present the results of a Nobeyama 45-m water maser and ammonia survey of
all 94 northern GLIMPSE Extended Green Objects (EGOs), a sample of massive
young stellar objects (MYSOs) identified based on their extended 4.5 micron
emission. We observed the ammonia (1,1), (2,2), and (3,3) inversion lines, and
detect emission towards 97%, 63%, and 46% of our sample, respectively (median
rms ~50 mK). The water maser detection rate is 68% (median rms ~0.11 Jy). The
derived water maser and clump-scale gas properties are consistent with the
identification of EGOs as young MYSOs. To explore the degree of variation among
EGOs, we analyze subsamples defined based on MIR properties or maser
associations. Water masers and warm dense gas, as indicated by emission in the
higher-excitation ammonia transitions, are most frequently detected towards
EGOs also associated with both Class I and II methanol masers. 95% (81%) of
such EGOs are detected in water (ammonia(3,3)), compared to only 33% (7%) of
EGOs without either methanol maser type. As populations, EGOs associated with
Class I and/or II methanol masers have significantly higher ammonia linewidths,
column densities, and kinetic temperatures than EGOs undetected in methanol
maser surveys. However, we find no evidence for statistically significant
differences in water maser properties (such as maser luminosity) among any EGO
subsamples. Combining our data with the 1.1 mm continuum Bolocam Galactic Plane
Survey, we find no correlation between isotropic water maser luminosity and
clump number density. Water maser luminosity is weakly correlated with clump
(gas) temperature and clump mass.Comment: Astrophysical Journal, accepted. Emulateapj, 24 pages including 24
figures, plus 9 tables (including full content of online-only tables
Deep Very Large Array Radio Continuum Surveys of GLIMPSE Extended Green Objects (EGOs)
We present the results of deep, high angular resolution Very Large Array
(VLA) surveys for radio continuum emission towards a sample of 14 GLIMPSE
Extended Green Objects (EGOs). Identified as massive young stellar object
(MYSO) outflow candidates based on their extended 4.5 micron emission in
Spitzer images, the EGOs in our survey sample are also associated with 6.7 GHz
Class II and/or 44 GHz Class I methanol masers. No continuum is detected at 3.6
or 1.3 cm towards the majority (57%) of our targets (median rms ~0.03 and 0.25
mJy/beam). Only two EGOs are associated with optically thin emission consistent
with ultracompact/compact HII regions. Both of these sources exhibit
cm-wavelength multiplicity, with evidence that one of the less-evolved members
may be driving the 4.5 micron outflow. Most of the other cm-wavelength EGO
counterparts are weak (< 1 mJy), unresolved, undetected at 1.3 cm, and
characterized by intermediate spectral indices consistent with hypercompact
(HC) HII regions or ionized winds or jets. One EGO cm counterpart, likely an
optically thick HC HII region, is detected only at 1.3 cm and is associated
with hot core line emission and water and 6.7 GHz methanol masers. The results
of our exceptionally sensitive survey indicate that EGOs signify an early stage
of massive star formation, before photoionizing feedback from the central MYSO
significantly influences the (proto)cluster environment. Actively driving
outflows (and so, presumably, actively accreting), the surveyed EGOs are
associated with significant clump-scale gas reservoirs, providing sufficient
material for sustained, rapid accretion.Comment: ApJ, accepted. 44 pages including 6 figures and 6 tables. Figures
compresse
- …