2,251 research outputs found

    The Low Energy Tagger for the KLOE-2 experiment

    Full text link
    The KLOE experiment at the upgraded DAFNE e+e- collider in Frascati (KLOE-2) is going to start a new data taking at the beginning of 2010 with its detector upgraded with a tagging system for the identification of gamma-gamma interactions. The tagging stations for low-energy e+e- will consist in two calorimeters The calorimeter used to detect low-energy e+e- will be placed between the beam-pipe outer support structure and the inner wall of the KLOE drift chamber. This calorimeter will be made of LYSO crystals readout by Silicon Photomultipliers, to achieve an energy resolution better than 8% at 200 MeV.Comment: 4 pages, 5 figures, in the proceedings of "Frontier detectors for frontier physics", isola d'Elba, Italy, May 200

    Enhanced shot noise in resonant tunneling: theory and experiment

    Full text link
    We show that shot noise in a resonant tunneling diode biased in the negative differential resistance regions of the I-V characteristic is enhanced with respect to ``full'' shot noise. We provide experimental results showing a Fano factor up to 6.6, and show that it is a dramatic effect caused by electron-electron interaction through Coulomb force, enhanced by the particular shape of the density of states in the well. We also present numerical results from the proposed theory, which are in agreement with the experiment, demonstrating that the model accounts for the relevant physics involved in the phenomenon.Comment: 4 pages, 4 figure

    Study of the a_0(980) meson via the radiative decay phi->eta pi^0 gamma with the KLOE detector

    Full text link
    We have studied the phi->a_0(980) gamma process with the KLOE detector at the Frascati phi-factory DAPhNE by detecting the phi->eta pi^0 gamma decays in the final states with eta->gamma gamma and eta->pi^+ pi^- pi^0. We have measured the branching ratios for both final states: Br(phi->eta pi^0 gamma)=(7.01 +/- 0.10 +/- 0.20)x10^-5 and (7.12 +/- 0.13 +/- 0.22)x10^-5 respectively. We have also extracted the a_0(980) mass and its couplings to eta pi^0, K^+ K^-, and to the phi meson from the fit of the eta pi^0 invariant mass distributions using different phenomenological models.Comment: 17 pages, 6 figures, submitted to Physics Letters B. Corrected typos in eq.

    Measurement of the front-end dead-time of the LHCb muon detector and evaluation of its contribution to the muon detection inefficiency

    Full text link
    A method is described which allows to deduce the dead-time of the front-end electronics of the LHCb muon detector from a series of measurements performed at different luminosities at a bunch-crossing rate of 20 MHz. The measured values of the dead-time range from 70 ns to 100 ns. These results allow to estimate the performance of the muon detector at the future bunch-crossing rate of 40 MHz and at higher luminosity

    A global fit to determine the pseudoscalar mixing angle and the gluonium content of the eta' meson

    Full text link
    We update the values of the eta-eta' mixing angle and of the eta' gluonium content by fitting our measurement R_phi = BR(phi to eta' gamma)/ BR(phi to eta gamma) together with several vector meson radiative decays to pseudoscalars (V to P gamma), pseudoscalar mesons radiative decays to vectors (P to V gamma) and the eta' to gamma gamma, pi^0 to gamma gamma widths. From the fit we extract a gluonium fraction of Z^2_G = 0.12 +- 0.04, the pseudoscalar mixing angle psi_P = (40.4 +- 0.6) degree and the phi-omega mixing angle psi_V = (3.32 +- 0.09) degree. Z^2_G and psi_P are fairly consistent with those previously published. We also evaluate the impact on the eta' gluonium content determination of future experimental improvements of the eta' branching ratios and decay width.Comment: 13 pages, 7 figures to submit to JHE

    Precision Measurement of KS Meson Lifetime with the KLOE detector

    Get PDF
    Using a large sample of pure, slow, short lived K0 mesons collected with KLOE detector at DaFne, we have measured the KS lifetime. From a fit to the proper time distribution we find tau = (89.562 +- 0.029_stat +- 0.043_syst) ps. This is the most precise measurement today in good agreement with the world average derived from previous measurements. We observe no dependence of the lifetime on the direction of the Ks.Comment: 5 pages, 7 figure

    Precision measurement of σ(e+eπ+πγ)/σ(e+eμ+μγ)\sigma(e^+e^-\rightarrow\pi^+\pi^-\gamma)/\sigma(e^+e^-\rightarrow \mu^+\mu^-\gamma) and determination of the π+π\pi^+\pi^- contribution to the muon anomaly with the KLOE detector

    Full text link
    We have measured the ratio σ(e+eπ+πγ)/σ(e+eμ+μγ)\sigma(e^+e^-\rightarrow\pi^+\pi^-\gamma)/\sigma(e^+e^-\rightarrow \mu^+\mu^-\gamma), with the KLOE detector at DAΦ\PhiNE for a total integrated luminosity of \sim 240 pb1^{-1}. From this ratio we obtain the cross section σ(e+eπ+π)\sigma(e^+e^-\rightarrow\pi^+\pi^-). From the cross section we determine the pion form factor Fπ2|F_\pi|^2 and the two-pion contribution to the muon anomaly aμa_\mu for 0.592<Mππ<0.9750.592<M_{\pi\pi}<0.975 GeV, Δππaμ\Delta^{\pi\pi} a_\mu= (385.1±1.1stat±2.7sys+theo)×1010({\rm 385.1\pm1.1_{stat}\pm2.7_{sys+theo}})\times10^{-10}. This result confirms the current discrepancy between the Standard Model calculation and the experimental measurement of the muon anomaly.Comment: 18 pages, 8 figures, minor text corrections, one table added, version to appear on Physics Letters
    corecore