13,389 research outputs found
Entanglement entropy and quantum field theory: a non-technical introduction
In these proceedings we give a pedagogical and non-technical introduction to
the Quantum Field Theory approach to entanglement entropy. Particular attention
is devoted to the one space dimensional case, with a linear dispersion
relation, that, at a quantum critical point, can be effectively described by a
two-dimensional Conformal Field Theory.Comment: 10 Pages, 2 figures. Talk given at the conference "Entanglement in
Physical and information sciences", Centro Ennio de Giorgi, Pisa, December
200
Entanglement Entropy in Extended Quantum Systems
After a brief introduction to the concept of entanglement in quantum systems,
I apply these ideas to many-body systems and show that the von Neumann entropy
is an effective way of characterising the entanglement between the degrees of
freedom in different regions of space. Close to a quantum phase transition it
has universal features which serve as a diagnostic of such phenomena. In the
second part I consider the unitary time evolution of such systems following a
`quantum quench' in which a parameter in the hamiltonian is suddenly changed,
and argue that finite regions should effectively thermalise at late times,
after interesting transient effects.Comment: 6 pages. Plenary talk delivered at Statphys 23, Genoa, July 200
The role of initial conditions in the ageing of the long-range spherical model
The kinetics of the long-range spherical model evolving from various initial
states is studied. In particular, the large-time auto-correlation and -response
functions are obtained, for classes of long-range correlated initial states,
and for magnetized initial states. The ageing exponents can depend on certain
qualitative features of initial states. We explicitly find the conditions for
the system to cross over from ageing classes that depend on initial conditions
to those that do not.Comment: 15 pages; corrected some typo
E-ELT constraints on runaway dilaton scenarios
We use a combination of simulated cosmological probes and astrophysical tests
of the stability of the fine-structure constant , as expected from the
forthcoming European Extremely Large Telescope (E-ELT), to constrain the class
of string-inspired runaway dilaton models of Damour, Piazza and Veneziano. We
consider three different scenarios for the dark sector couplings in the model
and discuss the observational differences between them. We improve previously
existing analyses investigating in detail the degeneracies between the
parameters ruling the coupling of the dilaton field to the other components of
the universe, and studying how the constraints on these parameters change for
different fiducial cosmologies. We find that if the couplings are small (e.g.,
) these degeneracies strongly affect the constraining
power of future data, while if they are sufficiently large (e.g.,
, as in agreement with current
constraints) the degeneracies can be partially broken. We show that E-ELT will
be able to probe some of this additional parameter space.Comment: 16 pages, 8 figures. Updated version matching the one accepted by
JCA
Field-theory results for three-dimensional transitions with complex symmetries
We discuss several examples of three-dimensional critical phenomena that can
be described by Landau-Ginzburg-Wilson theories. We present an
overview of field-theoretical results obtained from the analysis of high-order
perturbative series in the frameworks of the and of the
fixed-dimension d=3 expansions. In particular, we discuss the stability of the
O(N)-symmetric fixed point in a generic N-component theory, the critical
behaviors of randomly dilute Ising-like systems and frustrated spin systems
with noncollinear order, the multicritical behavior arising from the
competition of two distinct types of ordering with symmetry O() and
O() respectively.Comment: 9 pages, Talk at the Conference TH2002, Paris, July 200
On entanglement evolution across defects in critical chains
We consider a local quench where two free-fermion half-chains are coupled via
a defect. We show that the logarithmic increase of the entanglement entropy is
governed by the same effective central charge which appears in the ground-state
properties and which is known exactly. For unequal initial filling of the
half-chains, we determine the linear increase of the entanglement entropy.Comment: 11 pages, 5 figures, minor changes, reference adde
Slow dynamics in critical ferromagnetic vector models relaxing from a magnetized initial state
Within the universality class of ferromagnetic vector models with O(n)
symmetry and purely dissipative dynamics, we study the non-equilibrium critical
relaxation from a magnetized initial state. Transverse correlation and response
functions are exactly computed for Gaussian fluctuations and in the limit of
infinite number n of components of the order parameter. We find that the
fluctuation-dissipation ratios (FDRs) for longitudinal and transverse modes
differ already at the Gaussian level. In these two exactly solvable cases we
completely describe the crossover from the short-time to the long-time
behavior, corresponding to a disordered and a magnetized initial condition,
respectively. The effects of non-Gaussian fluctuations on longitudinal and
transverse quantities are calculated in the first order in the
epsilon-expansion and reliable three-dimensional estimates of the two FDRs are
obtained.Comment: 41 pages, 9 figure
Quantum Quench from a Thermal Initial State
We consider a quantum quench in a system of free bosons, starting from a
thermal initial state. As in the case where the system is initially in the
ground state, any finite subsystem eventually reaches a stationary thermal
state with a momentum-dependent effective temperature. We find that this can,
in some cases, even be lower than the initial temperature. We also study
lattice effects and discuss more general types of quenches.Comment: 6 pages, 2 figures; short published version, added references, minor
change
Dynamical phase coexistence: A simple solution to the "savanna problem"
We introduce the concept of 'dynamical phase coexistence' to provide a simple
solution for a long-standing problem in theoretical ecology, the so-called
"savanna problem". The challenge is to understand why in savanna ecosystems
trees and grasses coexist in a robust way with large spatio-temporal
variability. We propose a simple model, a variant of the Contact Process (CP),
which includes two key extra features: varying external
(environmental/rainfall) conditions and tree age. The system fluctuates locally
between a woodland and a grassland phase, corresponding to the active and
absorbing phases of the underlying pure contact process. This leads to a highly
variable stable phase characterized by patches of the woodland and grassland
phases coexisting dynamically. We show that the mean time to tree extinction
under this model increases as a power-law of system size and can be of the
order of 10,000,000 years in even moderately sized savannas. Finally, we
demonstrate that while local interactions among trees may influence tree
spatial distribution and the order of the transition between woodland and
grassland phases, they do not affect dynamical coexistence. We expect dynamical
coexistence to be relevant in other contexts in physics, biology or the social
sciences.Comment: 8 pages, 7 figures. Accepted for publication in Journal of
Theoretical Biolog
- …