138 research outputs found

    Earthquake-Resistant Fiber Reinforced Concrete Coupling Beams Without Diagonal Bars

    Get PDF
    Results from large-scale tests on fibre-reinforced concrete coupling beams subjected to large displacement reversals are reported. The main goal of using fibre reinforcement was to eliminate the need for diagonal bars and reduce the amount of confinement reinforcement required for adequate seismic performance. Experimental results indicate that the use of 30 mm long, 0.38 mm diameter hooked steel fibres with a 2300 MPa minimum tensile strength and in a volume fraction of 1.5% allows elimination of diagonal bars in coupling beams with span-todepth ratios greater than or equal to 2.2. Further, no special confinement reinforcement is required except at the ends of the coupling beams. The fibre-reinforced concrete coupling beam design was implemented in a high-rise building in the city of Seattle, WA, USA. A brief description of the coupling beam design used for this building, and construction process followed in the field, is provided

    A Generalization of the Goldberg-Sachs Theorem and its Consequences

    Full text link
    The Goldberg-Sachs theorem is generalized for all four-dimensional manifolds endowed with torsion-free connection compatible with the metric, the treatment includes all signatures as well as complex manifolds. It is shown that when the Weyl tensor is algebraically special severe geometric restrictions are imposed. In particular it is demonstrated that the simple self-dual eigenbivectors of the Weyl tensor generate integrable isotropic planes. Another result obtained here is that if the self-dual part of the Weyl tensor vanishes in a Ricci-flat manifold of (2,2) signature the manifold must be Calabi-Yau or symplectic and admits a solution for the source-free Einstein-Maxwell equations.Comment: 14 pages. This version matches the published on

    Visualization of conventional outflow tissue responses to netarsudil in living mouse eyes

    Get PDF
    AbstractVisual impairment due to glaucoma currently impacts 70 million people worldwide. While disease progression can be slowed or stopped with effective lowering of intraocular pressure, current medical treatments are often inadequate. Fortunately, three new classes of therapeutics that target the diseased conventional outflow tissue responsible for ocular hypertension are in the final stages of human testing. The rho kinase inhibitors have proven particularly efficacious and additive to current therapies. Unfortunately, non-contact technology that monitors the health of outflow tissue and its response to conventional outflow therapy is not available clinically. Using optical coherence tomographic (OCT) imaging and novel segmentation software, we present the first demonstration of drug effects on conventional outflow tissues in living eyes. Topical netarsudil (formerly AR-13324), a rho kinase/ norepinephrine transporter inhibitor, affected both proximal (trabecular meshwork and Schlemm’s Canal) and distal portions (intrascleral vessels) of the mouse conventional outflow tract. Hence, increased perfusion of outflow tissues was reliably resolved by OCT as widening of the trabecular meshwork and significant increases in cross-sectional area of Schlemm’s canal following netarsudil treatment. These changes occurred in conjunction with increased outflow facility, increased speckle variance intensity of outflow vessels, increased tracer deposition in conventional outflow tissues and decreased intraocular pressure. This is the first report using live imaging to show real-time drug effects on conventional outflow tissues and specifically the mechanism of action of netarsudil in mouse eyes. Advancements here pave the way for development of a clinic-friendly OCT platform for monitoring glaucoma therapy

    Eutectic Colony Formation: A Stability Analysis

    Full text link
    Experiments have widely shown that a steady-state lamellar eutectic solidification front is destabilized on a scale much larger than the lamellar spacing by the rejection of a dilute ternary impurity and forms two-phase cells commonly referred to as `eutectic colonies'. We extend the stability analysis of Datye and Langer for a binary eutectic to include the effect of a ternary impurity. We find that the expressions for the critical onset velocity and morphological instability wavelength are analogous to those for the classic Mullins-Sekerka instability of a monophase planar interface, albeit with an effective surface tension that depends on the geometry of the lamellar interface and, non-trivially, on interlamellar diffusion. A qualitatively new aspect of this instability is the occurence of oscillatory modes due to the interplay between the destabilizing effect of the ternary impurity and the dynamical feedback of the local change in lamellar spacing on the front motion. In a transient regime, these modes lead to the formation of large scale oscillatory microstructures for which there is recent experimental evidence in a transparent organic system. Moreover, it is shown that the eutectic front dynamics on a scale larger than the lamellar spacing can be formulated as an effective monophase interface free boundary problem with a modified Gibbs-Thomson condition that is coupled to a slow evolution equation for the lamellar spacing. This formulation provides additional physical insights into the nature of the instability and a simple means to calculate an approximate stability spectrum. Finally, we investigate the influence of the ternary impurity on a short wavelength oscillatory instability that is already present at off-eutectic compositions in binary eutectics.Comment: 26 pages RevTex, 14 figures (28 EPS files); some minor changes; references adde

    An RNA Transport System in Candida albicans Regulates Hyphal Morphology and Invasive Growth

    Get PDF
    Localization of specific mRNAs is an important mechanism through which cells achieve polarity and direct asymmetric growth. Based on a framework established in Saccharomyces cerevisiae, we describe a She3-dependent RNA transport system in Candida albicans, a fungal pathogen of humans that grows as both budding (yeast) and filamentous (hyphal and pseudohyphal) forms. We identify a set of 40 mRNAs that are selectively transported to the buds of yeast-form cells and to the tips of hyphae, and we show that many of the genes encoded by these mRNAs contribute to hyphal development, as does the transport system itself. Although the basic system of mRNA transport is conserved between S. cerevisiae and C. albicans, we find that the cargo mRNAs have diverged considerably, implying that specific mRNAs can easily move in and out of transport control over evolutionary timescales. The differences in mRNA cargos likely reflect the distinct selective pressures acting on the two species

    A late role for a subset of neurogenic genes to limit sensory precursor recruitments in Drosophila embryos

    Full text link
    In Drosophila , mutations in a class of genes, the neurogenic genes, produce an excess of neurons. This neural hyperplasia has been attributed to the formation of more than the normal number of neuronal precursor cells at the expense of epidermal cells. In order to find out whether the neurogenic genes only act at this intial step of neurogenesis, we studied the replication pattern of the sensory organ precursor cells by monitoring BrdU incorporation in embryos mutant for Notch ( N ), Delta ( Dl ), mastermind ( mam ), almondex ( amx ), neuralized ( neu ), big brain ( bib ) and the Enhancer of split -Complex ( E ( spl )- C ). Using temperature sensitive alleles of two of the neurogenic genes, DI and N , we also induced an acute increase of replicating sensory precursors by shifting briefly to the restricted temperature. We have found that the loss of function of all the seven neurogenic loci that were tested causes an increase in replicating sensory precursor cells, consistent with the model that these neurogenic genes normally participate in the process of restricting the number of neuronal precursors. Whereas the temporal pattern of replication appeared normal in mutants of five of the seven neurogenic loci, in N and mam embryos replicating PNS cells are present beyond the time when they normally undergo replication. Experiments with colchicine suggest that many of these late replicating cells may be newly emerging precursors and probably not additional cell divisions of already recruited precursors. Thus, different neurogenic genes may be required over different periods of time for the specification of sensory precursor cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47511/1/427_2004_Article_BF00188736.pd
    • …
    corecore