850 research outputs found

    The Stanford equivalence principle program

    Get PDF
    The Stanford Equivalence Principle Program (Worden, Jr. 1983) is intended to test the uniqueness of free fall to the ultimate possible accuracy. The program is being conducted in two phases: first, a ground-based version of the experiment, which should have a sensitivity to differences in rate of fall of one part in 10(exp 12); followed by an orbital experiment with a sensitivity of one part in 10(exp 17) or better. The ground-based experiment, although a sensitive equivalence principle test in its own right, is being used for technology development for the orbital experiment. A secondary goal of the experiment is a search for exotic forces. The instrument is very well suited for this search, which would be conducted mostly with the ground-based apparatus. The short range predicted for these forces means that forces originating in the Earth would not be detectable in orbit. But detection of Yukawa-type exotic forces from a nearby large satellite (such as Space Station) is feasible, and gives a very sensitive and controllable test for little more effort than the orbiting equivalence principle test itself

    A functional description of CymA, an electron-transfer hub supporting anaerobic respiratory flexibility in Shewanella

    Get PDF
    CymA (tetrahaem cytochrome c) is a member of the NapC/NirT family of quinol dehydrogenases. Essential for the anaerobic respiratory flexibility of shewanellae, CymA transfers electrons from menaquinol to various dedicated systems for the reduction of terminal electron acceptors including fumarate and insoluble minerals of Fe(III). Spectroscopic characterization of CymA from Shewanella oneidensis strain MR-1 identifies three low-spin His/His co-ordinated c-haems and a single high-spin c-haem with His/H2O co-ordination lying adjacent to the quinol-binding site. At pH 7, binding of the menaquinol analogue, 2-heptyl-4-hydroxyquinoline-N-oxide, does not alter the mid-point potentials of the high-spin (approximately −240 mV) and low-spin (approximately −110, −190 and −265 mV) haems that appear biased to transfer electrons from the high- to low-spin centres following quinol oxidation. CymA is reduced with menadiol (Em=−80 mV) in the presence of NADH (Em=−320 mV) and an NADH–menadione (2-methyl-1,4-naphthoquinone) oxidoreductase, but not by menadiol alone. In cytoplasmic membranes reduction of CymA may then require the thermodynamic driving force from NADH, formate or H2 oxidation as the redox poise of the menaquinol pool in isolation is insufficient. Spectroscopic studies suggest that CymA requires a non-haem co-factor for quinol oxidation and that the reduced enzyme forms a 1:1 complex with its redox partner Fcc3 (flavocytochrome c3 fumarate reductase). The implications for CymA supporting the respiratory flexibility of shewanellae are discussed.</jats:p

    The effect of antifibrinolytic agents on the healing of modified Widman flaps in monkeys

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65632/1/j.1600-0765.1984.tb00810.x.pd

    The pathogenesis of pulmonary hypertension - an update

    Full text link
    Elevation of the mean pulmonary arterial pressure to ≥25 mm Hg within the low-pressure system of the pulmonary circulation is defined as pulmonary hypertension. Pulmonary hypertension may be the consequence of various clinical and pathophysiological entities. Many of these conditions, however, result in a final common pathway of pathogenesis. This pathway is characterised by the triad of excessive vasoconstriction, microthrombosis and remodelling of pulmonary arteries. Remodelling is arguably the most important factor: its complex pathogenesis is not completely understood and no specific treatment directly targets vascular remodelling. This article aims to review the current understanding of the pathogenesis of pulmonary hypertension and to give insights in future developments in this evolving field

    Pseudomonas aeruginosa AES-1 exhibits increased virulence gene expression during chronic infection of cystic fibrosis lung

    Get PDF
    Pseudomonas aeruginosa, the leading cause of morbidity and mortality in people with cystic fibrosis (CF), adapts for survival in the CF lung through both mutation and gene expression changes. Frequent clonal strains such as the Australian Epidemic Strain-1 (AES-1), have increased ability to establish infection in the CF lung and to superimpose and replace infrequent clonal strains. Little is known about the factors underpinning these properties. Analysis has been hampered by lack of expression array templates containing CF-strain specific genes. We sequenced the genome of an acute infection AES-1 isolate from a CF infant (AES-1R) and constructed a non-redundant micro-array (PANarray) comprising AES-1R and seven other sequenced P. aeruginosa genomes. The unclosed AES-1R genome comprised 6.254Mbp and contained 6957 putative genes, including 338 not found in the other seven genomes. The PANarray contained 12,543 gene probe spots; comprising 12,147 P. aeruginosa gene probes, 326 quality-control probes and 70 probes for non-P. aeruginosa genes, including phage and plant genes. We grew AES-1R and its isogenic pair AES-1M, taken from the same patient 10.5 years later and not eradicated in the intervening period, in our validated artificial sputum medium (ASMDM) and used the PANarray to compare gene expression of both in duplicate. 675 genes were differentially expressed between the isogenic pairs, including upregulation of alginate, biofilm, persistence genes and virulence-related genes such as dihydroorotase, uridylate kinase and cardiolipin synthase, in AES-1M. Non-PAO1 genes upregulated in AES-1M included pathogenesis-related (PAGI-5) genes present in strains PACS2 and PA7, and numerous phage genes. Elucidation of these genes' roles could lead to targeted treatment strategies for chronically infected CF patients. © 2011 Naughton et al

    A Transiting Planet of a Sun-like Star

    Get PDF
    A planet transits an 11th magnitude, G1V star in the constellation Corona Borealis. We designate the planet XO-1b, and the star, XO-1, also known as GSC 02041-01657. XO-1 lacks a trigonometric distance; we estimate it to be 200+-20 pc. Of the ten stars currently known to host extrasolar transiting planets, the star XO-1 is the most similar to the Sun in its physical characteristics: its radius is 1.0+-0.08 R_Sun, its mass is 1.0+-0.03 M_Sun, V sini < 3 km/s, and its metallicity [Fe/H] is 0.015+-0.04. The orbital period of the planet XO-1b is 3.941534+-0.000027 days, one of the longer ones known. The planetary mass is 0.90+-0.07 M_Jupiter, which is marginally larger than that of other transiting planets with periods between 3 and 4 days. Both the planetary radius and the inclination are functions of the spectroscopically determined stellar radius. If the stellar radius is 1.0+-0.08 R_Sun, then the planetary radius is 1.30+-0.11 R_Jupiter and the inclination of the orbit is 87.7+-1.2 degrees. We have demonstrated a productive international collaboration between professional and amateur astronomers that was important to distinguishing this planet from many other similar candidates.Comment: 31 pages, 9 figures, accepted for part 1 of Ap

    Vascular Health in American Football Players: Cardiovascular Risk Increased in Division III Players

    Get PDF
    Studies report that football players have high blood pressure (BP) and increased cardiovascular risk. There are over 70,000 NCAA football players and 450 Division III schools sponsor football programs, yet limited research exists on vascular health of athletes. This study aimed to compare vascular and cardiovascular health measures between football players and nonathlete controls. Twenty-three athletes and 19 nonathletes participated. Vascular health measures included flow-mediated dilation (FMD) and carotid artery intima-media thickness (IMT). Cardiovascular measures included clinic and 24 hr BP levels, body composition, VO2 max, and fasting glucose/cholesterol levels. Compared to controls, football players had a worse vascular and cardiovascular profile. Football players had thicker carotid artery IMT (0.49 ± 0.06 mm versus 0.46 ± 0.07 mm) and larger brachial artery diameter during FMD (4.3 ± 0.5 mm versus 3.7 ± 0.6 mm), but no difference in percent FMD. Systolic BP was significantly higher in football players at all measurements: resting (128.2 ± 6.4 mmHg versus 122.4 ± 6.8 mmHg), submaximal exercise (150.4 ± 18.8 mmHg versus 137.3 ± 9.5 mmHg), maximal exercise (211.3 ± 25.9 mmHg versus 191.4 ± 19.2 mmHg), and 24-hour BP (124.9 ± 6.3 mmHg versus 109.8 ± 3.7 mmHg). Football players also had higher fasting glucose (91.6 ± 6.5 mg/dL versus 86.6 ± 5.8 mg/dL), lower HDL (36.5±11.2 mg/dL versus 47.1±14.8 mg/dL), and higher body fat percentage (29.2±7.9% versus 23.2±7.0%). Division III collegiate football players remain an understudied population and may be at increased cardiovascular risk

    Blunted cardiomyocyte remodeling response in exercise-resistant rats

    Get PDF
    Increasing a subject’s aerobic exercise capacity with training decreases cardiovascular morbidity and mortality. Of major concern is the key observation that up to 20% of subjects demonstrate little or no change in maximal oxygen consumption (VO2max) with exercise training (1) and can be considered exercise resistant. Our goal with the current research was to test the hypothesis that variation in training response is associated with cardiomyocyte functional response to training

    Understanding the ongoing learning needs of Australian metropolitan, rural and remote paediatricians: Evaluation of a neurology outreach programme

    Get PDF
    Aim: The purpose of this study was to evaluate whether a neurology outreach teaching programme delivered via video-teleconferencing (6 × 60 min live sessions every 6–8 weeks) is acceptable, contributes to understanding and meets the neurology learning needs of Australian paediatricians from metropolitan, rural and remote areas. Methods: A sample of six NSW sites that joined the neurology outreach programme between 2017 and 2019 (Arm 1) and six interstate sites from QLD, WA and TAS who commenced the programme in 2020 (Arm 2) participated. A mixed-methods survey explored participants' learning needs and value of the programme. Results: Forty-six participants submitted programme evaluation surveys (26 arm 1, 20 arm 2); 9 were removed due to insufficient data (n = 37). Quantitative and qualitative data showed the programme was acceptable in format, relevant to practice, appropriate for clinician learning needs, and engaging. Clinicians reported improvement in understanding and confidence. Participants felt more connected/less isolated and up-to-date. Participants reported a positive impact from the programme on approach to neurological problems and ensuing consults, and more differentiated and appropriate paediatric neurology referrals. Conclusion: This study validates the live video-teleconference outreach model as an acceptable, effective and important means of providing continuing neurology education for Australian paediatricians
    corecore