134 research outputs found
Exploring conformational energy landscape of glassy disaccharides by CPMAS 13C NMR and DFT/GIAO simulations. II. Enhanced molecular flexibility in amorphous trehalose
This paper deals with the comparative use of the chemical shift surfaces to
simulate experimental 13C CPMAS data on amorphous solid state disaccharides,
paying particular attention to -1-1 linkage of trehalose, to
-1,4 linkage between pyranose rings (lactose) and to linkage implying a
furanose ring (sucrose). The combination of molecular mechanics with DFT/GIAO
ab-initio methods provides reliable structural information on the
conformational distribution in the glass. The results are interpreted in terms
of an enhanced flexibility that trehalose experiences in amorphous solid state
compared to the other sugars. An attempt to relate this property to the balance
between intra- and inter-molecular hydrogen bonding network in the glass is
presented
A Partial-Closure Canonicity Test to Increase the Efficiency of CbO-Type Algorithms
Computing formal concepts is a fundamental part of Formal Concept Analysis and the design of increasingly efficient algorithms to carry out this task is a continuing strand of FCA research. Most approaches suffer from the repeated computation of the same formal concepts and, initially, algorithms concentrated on efficient searches through already computed results to detect these repeats, until the so-called canonicity test was introduced. The canonicity test meant that it was sufficient to examine the attributes of a computed concept to determine its newness: searching through previously computed concepts was no longer necessary. The employment of this test in Close-by-One type algorithms has proved to be highly effective. The typical CbO approach is to compute a concept and then test its canonicity. This paper describes a more efficient approach, whereby a concept need only be partially computed in order to carry out the test. Only if it passes the test does the computation of the concept need to be completed. This paper presents this ‘partial-closure’ canonicity test in the In-Close algorithm and compares it to a traditional CbO algorithm to demonstrate the increase in efficiency
Multiple glass transitions in star polymer mixtures: Insights from theory and simulations
The glass transition in binary mixtures of star polymers is studied by mode
coupling theory and extensive molecular dynamics computer simulations. In
particular, we have explored vitrification in the parameter space of size
asymmetry and concentration of the small star polymers at
fixed concentration of the large ones. Depending on the choice of parameters,
three different glassy states are identified: a single glass of big polymers at
low and low , a double glass at high and low
, and a novel double glass at high and high which is
characterized by a strong localization of the small particles. At low
and high there is a competition between vitrification and phase
separation. Centered in the -plane, a liquid lake shows up
revealing reentrant glass formation. We compare the behavior of the dynamical
density correlators with the predictions of the theory and find remarkable
agreement between the two.Comment: 15 figures, to be published in Macromolecule
An integrated approach using M. truncatula to identify loci/genes controlling nutritional and physiological quality of legume seeds
An integrated approach using M. truncatula to identify loci/genes controlling nutritional and physiological quality of legume seeds
The kinetic fragility of liquids as manifestation of the elastic softening
We show that the fragility , the steepness of the viscosity and relaxation
time close to the vitrification, increases with the degree of elastic
softening, i.e. the decrease of the elastic modulus with increasing
temperature, in universal way. This provides a novel connection between the
thermodynamics, via the modulus, and the kinetics. The finding is evidenced by
numerical simulations and comparison with the experimental data of glassformers
with widely different fragilities (), leading to a
fragility-independent elastic master curve extending over eighteen decades in
viscosity and relaxation time. The master curve is accounted for by a cavity
model pointing out the roles of both the available free volume and the cage
softness. A major implication of our findings is that ultraslow relaxations,
hardly characterised experimentally, become predictable by linear elasticity.
As an example, the viscosity of supercooled silica is derived over about
fifteen decades with no adjustable parameters.Comment: 7 pages, 6 figures; Added new results, improved the theoretical
sectio
Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects
The global population is continuously increasing and is expected to reach nine billion by 2050. This huge population pressure will lead to severe shortage of food, natural resources and arable land. Such an alarming situation is most likely to arise in developing countries due to increase in the proportion of people suffering from protein and micronutrient malnutrition. Pulses being a primary and affordable source of proteins and minerals play a key role in alleviating the protein calorie malnutrition, micronutrient deficiencies and other undernourishment-related issues. Additionally, pulses are a vital source of livelihood generation for millions of resource-poor farmers practising agriculture in the semi-arid and sub-tropical regions. Limited success achieved through conventional breeding so far in most of the pulse crops will not be enough to feed the ever increasing population. In this context, genomics-assisted breeding (GAB) holds promise in enhancing the genetic gains. Though pulses have long been considered as orphan crops, recent advances in the area of pulse genomics are noteworthy, e.g. discovery of genome-wide genetic markers, high-throughput genotyping and sequencing platforms, high-density genetic linkage/QTL maps and, more importantly, the availability of whole-genome sequence. With genome sequence in hand, there is a great scope to apply genome-wide methods for trait mapping using association studies and to choose desirable genotypes via genomic selection. It is anticipated that GAB will speed up the progress of genetic improvement of pulses, leading to the rapid development of cultivars with higher yield, enhanced stress tolerance and wider adaptability
An Analysis of Cost Overruns and Time Delays of INDOT Projects
A commonality among state Departments of Transportation is the inability to complete projects on time and within budget. This project assessed the extent of the problem of cost overruns, time delays, and change orders associated with Indiana Department of Transportation (INDOT) construction projects, identified the reasons for such problems, and finally developed a set of recommendations aimed at their future reduction. For comparison purposes, data from other states were collected and studied using a questionnaire instrument. The analysis of the cost overrun, time delay and change order data was done using an array of statistical methods. The literature review and agency survey showed that time delays, cost overruns and change orders are generally due to factors such as design, unexpected site conditions, increases in project scope, weather conditions, and other project changes. The results of the agency survey showed that with regard to the problem of cost overruns, INDOT has an average rank compared to other states. Between 1996 and 2001, the overall rate for cost overrun amounts for INDOT projects was determined as 4.5%, and it was found that 55% of all INDOT contracts experienced cost overruns. It was determined that the average cost overrun amount and rate, as well as the contributory cost overrun factors differ by project type. The average cost overrun rates were as follows: bridge projects -- 8.1%, road construction -- 5.6%, road resurfacing -- 2.6%, traffic projects -- 5.6%, maintenance projects -- 7.5%. With regard to time delays, it was found that 12% of all INDOT contracts experience time delays, and the average delay per contract was 115 days. With regard to change orders, the study found that the dominant category of reasons for change orders is “errors and omissions”, a finding which is suggestive of possible shortcomings in current design practices The statistical analyses in the present study showed that the major factors of cost overruns, time delays, and change orders in Indiana are contract bid amount, difference between the winning bid and second bid, difference between the winning bid and the engineer’s estimate, project type and location by district. Besides helping to identify or confirm influential factors of cost overruns, time delay and change orders, the developed regression models may be used to estimate the extent of future cost overruns, time delay and change orders of any future project given its project characteristics and any available contract details. Such models can therefore be useful in long-term budgeting and needs assessment studies. Finally, the present study made recommendations for improving the management of projects and the administration of contracts in order to reduce cost overruns, time delays and change orders
- …