We show that the fragility m, the steepness of the viscosity and relaxation
time close to the vitrification, increases with the degree of elastic
softening, i.e. the decrease of the elastic modulus with increasing
temperature, in universal way. This provides a novel connection between the
thermodynamics, via the modulus, and the kinetics. The finding is evidenced by
numerical simulations and comparison with the experimental data of glassformers
with widely different fragilities (33≤m≤115), leading to a
fragility-independent elastic master curve extending over eighteen decades in
viscosity and relaxation time. The master curve is accounted for by a cavity
model pointing out the roles of both the available free volume and the cage
softness. A major implication of our findings is that ultraslow relaxations,
hardly characterised experimentally, become predictable by linear elasticity.
As an example, the viscosity of supercooled silica is derived over about
fifteen decades with no adjustable parameters.Comment: 7 pages, 6 figures; Added new results, improved the theoretical
sectio