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Abstract. Computing formal concepts is a fundamental part of Formal
Concept Analysis and the design of increasingly efficient algorithms to
carry out this task is a continuing strand of FCA research. Most ap-
proaches suffer from the repeated computation of the same formal con-
cepts and, initially, algorithms concentrated on efficient searches through
already computed results to detect these repeats, until the so-called
canonicity test was introduced. The canonicity test meant that it was
sufficient to examine the attributes of a computed concept to determine
its newness: searching through previously computed concepts was no
longer necessary. The employment of this test in Close-by-One type al-
gorithms has proved to be highly effective. The typical CbO approach
is to compute (close) a concept and then test its canonicity. This pa-
per describes a more efficient approach, whereby a concept need only be
partially closed in order to carry out the test. Only if it passes the test
does its closure need to be completed. This paper presents this partial-
closure canonicity test in the In-Close algorithm and compares this to a
traditional CbO algorithm to demonstrate the increase in efficiency.

Keywords: Formal Concept Analysis; FCA; FCA algorithms; Com-
puting formal concepts; Canonicity test; Partial-closure canonicity test;
Close-by-One; In-Close; CbO

1 Introduction

The emergence of Formal Concept Analysis (FCA) as a data analysis tech-
nique [5,14,29] has increased the need for algorithms that compute formal con-
cepts quickly. A problem in computing these formal concepts is the large number
that can exist in a typical dataset. It is known that the number of concepts can
be exponential in the size of the input context and the problem of determining
this number is #P-complete [20]. Furthermore, computation of formal concepts
typically involves repeated computation of the same concept [8], which is un-
wanted as we are normally interested only in obtaining the unique concepts.
Older algorithms relied on ever more efficient search techniques to find repeated
concepts, but these algorithms were superseded by the discovery of the so-called
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‘canonicty test’ [11], whereby the attributes concept could be examined to de-
termine its uniqueness in the computation. This test has given rise to a number
of algorithms based on the Close-by-One (CbO) algorithm [19] and the focus of
research has been to develop improvements of the original CbO algorithm. This
paper presents one such improvement in the form of a more efficient canonicity
test: the partial-closure canonicity test.

The next two sections of the paper briefly describe formal concepts and the
main issues involved in their efficient computation, showing how testing a com-
puted concept’s canonicity is an efficient means of detecting the computation of
repeated results. Section 4 shows a CbO algorithm incorporating a canonicity
test that involves the full closure of concept before testing. Section 5 presents a
partial-closure canonicity test that avoids the need for full closure before testing
and in Section 6 the partial-closure test is realised in the In-CloseI algorithm.
Section 7 compares and evaluates the efficiency of the algorithms by carrying
out ‘level playing field’ implementations and experiments on variety of data sets.
Another recent advance in CbO-type algorithms, that allows the inheritance of
failed canonicity tests in the recursion, is included in the evaluations. Finally,
the paper makes its conclusions and suggestions for further work in Section 8.

2 Formal Concepts

A description of formal concepts [12] begins with a set of objects X and a set
of attributes Y . A binary relation I ⊆ X × Y is called the formal context. If
x ∈ X and y ∈ Y then xIy says that object x has attribute y. For a set of
objects A ⊆ X, a derivation operator ↑ is defined to obtain the set of attributes
common to the objects in A as follows:

A↑ := { y ∈ Y | ∀x ∈ A : xIy }. (1)

Similarly, for a set of attributes B ⊆ Y , the ↓ operator is defined to obtain
the set of objects common to the attributes in B as follows:

B↓ := { x ∈ X | ∀y ∈ B : xIy }. (2)

(A,B) is a formal concept iff A↑ = B and B↓ = A. The relations A × B
are then a closed set of pairs in I. In other words, a formal concept is a set of
attributes and a set of objects such that all of the objects have all of the attributes
and there are no other objects that have all of the attributes. Similarly, there
are no other attributes that all the objects have. A is called the extent of the
formal concept and B is called the intent of the formal concept.

A formal context is typically represented as a cross table, with crosses in-
dicating binary relations between objects (rows) and attributes (columns). The
following is a simple example of a formal context:

0 1 2 3 4

a × × ×
b × × × ×
c × ×
d × × ×



Formal concepts in a cross table can be visualised as closed rectangles of
crosses, where the rows and columns in the rectangle are not necessarily con-
tiguous. The formal concepts in the example context are:

C1 = ({a, b, c, d}, ∅) C6 = ({b}, {1, 2, 3, 4})
C2 = ({a, c}, {0}) C7 = ({b, d}, {1, 2, 4})
C3 = (∅, {0, 1, 2, 3, 4}) C8 = ({b, c, d}, {2})
C4 = ({c}, {0, 2}) C9 = ({a, b}, {3, 4})
C5 = ({a}, {0, 3, 4}) C10 = ({a, b, d}, {4})

3 Computation of formal concepts

A formal concept can be computed by applying the ↓ operator to a set of at-
tributes to obtain its extent, and then applying the ↑ operator to the extent to
obtain the intent. This is the notion of concept closure. For example, taking an
arbitrary set of attributes, say {1, 2}, from the the context above, {1, 2}↓ = {b, d}
and {b, d}↑ = {1, 2, 4}. ({b, d}, {1, 2, 4}) is concept C7 in the list above. If this
procedure is applied to every possible combination of attributes, then all the
concepts in the context will be computed.

Thus, if there are n attributes in a formal context there are, potentially, 2n

concepts. It is the exponential nature of the problem that provides the com-
putational challenge, compounded by the fact that the same concept can be
computed more than once - in the worst case, exponentially many times. For ex-
ample, in the context above, the concept C7 will be computed six times because
the extent {b, d} can be obtained from the closure of six different combinations
of attributes: {b, d} = {1}↓ = {1, 2}↓ = {1, 2, 3}↓ = {1, 4}↓ = {2, 4}↓ = {4}↓.

Thus determining that a concept is a repeat is a key halting condition of the
algorithm if we are only interested in obtaining unique concepts. The algorithm
ComputeConceptsOnce, below, illustrates this approach by intersecting a current
extent A with successive attribute closures (successive ‘columns’ in the context),
closing the resulting ‘candidate’ new extent C and then testing the newness of
the resulting concept. If the concept passes the test it is processed in some way
(stored for example) and the algorithm called again, passing the new extent and
the next attribute to the next level of recursion. The algorithm is invoked with
an extent and a starting attribute, initially (X, 0).

ComputeConceptsOnce(A, y)

for j ← y upto n− 1 do

C ← A ∩ {j}↓
B ← C↑

if NewConcept(C,B) then
ProcessConcept(C,B)

ComputeConceptsOnce(C, j + 1)



Early algorithms concentrated on finding repeats by efficiently searching the
previously generated concepts. Lindig’s algorithm [23], and others like it, use a
search tree to quickly find repeated results. Others use a hash function where
the cardinality of results is used to divide them into groups, thus narrowing the
search [13]. The problem with these approaches is that even an efficient search
becomes expensive when there is a large number of repeated concepts.

Ganter noticed [11] that the basic algorithm recursively iterated attribute
combinations in the natural combinatorial order, or canon. A concept is thus
canonical if, when it is computed, its rank comes after the previous canonical
concept. For example, the concepts in Section 2, above, are listed in the nat-
ural combinatorial order of their intents: ∅ < {0} < {0, 1, 2, 3, 4} < {0, 2} <
{0, 3, 4} < {1, 2, 3, 4}, and so on. If the previous concept to be computed had
the intent {0, 3, 4} and the next concept had the intent {0, 2}, it would be re-
jected as a repeat: it will have been generated earlier in the computation. It is this
canonicity, and the testing thereof, that has become fundamental in detecting the
repeated computation of a concept. If concepts are computed in this order, then
if a concept is generated that has a rank lower or equal to that of its predeces-
sor, it must be a repeat. Kuznetsov specified in Close-by-One (CbO) [19,21] an
efficient means of achieving this with a time complexity of O(|G||M |2|L|), where
L is the set of concepts, or O(|M |2|G||L|) if the main cycle of the algorithm is
over attributes instead of objects, as in the CbO-type algorithms presented here.

CbO has thus formed the basis for several variants and improvements [1,
2, 16, 17, 26] and it has been shown, in numerous tests, that these CbO-type
algorithms are significantly faster than previous algorithms [1,2,6,15–17,22,26,
28], outperforming algorithms including Chein [9], Norris [24], Next-Closure [11],
Bordat [7], Godin [13], Nourine [25] and Add-Intent [30].

4 CbO Algorithm [16]

In the CbO algorithm of Krajca, Outrata and Vychodil [16], the canonicity test
for a new concept is carried out by comparing a newly computed intent, D, with
its predecessor, B. If they agree in all attributes up to the current attribute, j,
then the new concept is canonical. If, however, there is an attribute in D that is
not in B and that comes before j then the concept is not canonical (it will have
been computed earlier). Thus a new concept is canonical if:

B ∩ Yj = D ∩ Yj (3)

Where Yj is the set of attributes up to but not including j:

Yj := {y ∈ Y | y < j} (4)

The algorithm also passes the intent of a parent concept down to the next
level, so that its attributes can be skipped. In effect this is a simple test to avoid
repeatedly closing the parent concept. The correctness of the original CbO al-
gorithm is given in [19], and proof of the canonicity test has been shown in [16].



The algorithm is written below and is called ComputeConceptsFrom. The
procedure is invoked with the initial concept (A,B) = (X,X↑) and attribute
y = 0.

CbO

ComputeConceptsFrom((A,B), y)

ProcessConcept((A,B))1

for j ← y upto n− 1 do2

if j /∈ B then3

C ← A ∩ {j}↓4

D ← C↑
5

if B ∩ Yj = D ∩ Yj then6

ComputeConceptsFrom((C,D), j + 1)7

A line-by-line explanation of the algorithm is as follows:
Line 1 - Pass concept (A,B) to notional procedure ProcessConcept to pro-

cess it in some way (for example, storing it in a set of concepts).
Line 2 - Iterate across the context, from attribute y up to attribute n− 1.
Line 3 - Test if the next attribute is in the current intent, B. If it is, skip it

to avoid computing the same concept again.
Line 4 - Otherwise, form an extent, C, by intersecting the current extent, A,

with the next column of objects in the context.
Line 5 - Close the extent to form an intent, D. Thus the concept (C,D) is

computed (‘fully closed’) before the canonicity test is carried out to determine
if it is a new one:

Line 6 - Perform the canonicity test by checking that attributes in B and D
agree up to the current attribute. If they do then the concept (C,D), is a new
one so:

Line 7 - Recursively compute concepts from the new one, starting from the
next attribute in the context.

CbO call tree - Figure 1 shows the CbO call tree for the simple example. A
rounded box represents the computation of a concept and a square box represents
the computation of a repeated concept (that then fails the canonicity test). The
lower part of a box shows the intersections carried out in the computation of
the corresponding concept: the empty-square arrows are the extent intersections,
A∩ {j}↓, and the filled-circle arrows are the closure intersections in C↑. In each
case the number pointed to represents the attribute involved. Note that each
concept, new or repeat, requires a full closure. The notation < Cx, j > represents
the invocation of the next level in the form of concept and corresponding initial
attribute. The numbered lines connecting the boxes represent the iteration of j
in the main cycle.



There are a total of 15 closures in the tree, with five intersections required
for each closure, plus 14 extent intersections, making a total of 89 intersections
for CbO.
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Fig. 1. CbO Call Tree

5 A partial-closure canonicity test

In the CbO algorithm, above, a concept is fully closed before the canonicity
test is applied to it. However, it is sufficient to close a concept only up to the
current attribute j to determine its canonicity. Remember that the canonicity
test in CbO compares the previous and new intent to see that they agree in all
attributes up to the current attribute. Attributes after the current one have no
bearing on the canonicity.

Thus in designing a partial-closure canonicity test we define, from 1 and 4,
a partial-closure operator ↑j as a modification of the original closure operator:

A↑j := { y ∈ Yj | ∀x ∈ A : xIy }. (5)

The partial-closure canonicity test will thus determine if the attributes in the
intent B, up to j, agree with the attributes in the closure of C up to j and can
be defined from 5 and 3 as:

B ∩ Yj = C↑j (6)

If there is an attribute in C↑j that is in B before j then the concept is not
canonical and is a repeat.

The efficiency is that a partial-closure, C↑j , is clearly less expensive to com-
pute than a complete closure, C↑. The cost of the complete closure is a number



of intersections equal to the number of attributes, n, whereas the cost of the
partial-closure is always < n.

In fact, the implementation of the partial closure test can be even more
efficient because the closure can be halted as soon as an attribute is found that
is in B before j, so the cost of the closure will actually be < j for each test
failure.

Of course, if the canonicity test is passed, new concepts still need to be fully
closed and this can be carried out in the In-Close type of CbO algorithms.

6 In-CloseI algorithm with partial-closure test

This section gives an updated version of the algorithm given in [1]. The key
difference to the CbO algorithm in Section 4, above, is that the canonicity test
is applied before a concept is fully closed. The closure of a concept that passes the
test is completed at the next level of recursion, by adding the current attribute j
to the intent B whenever the current extent A is found: i.e. whenever A∩{j}↓ =
A. This test of equality can be implemented with almost zero additional cost,
given that the intersection A ∩ {j}↓ is carried out in any case. Whenever a new
concept is detected, the current, partial, intent is passed to the next level. The
intent is then fully closed when the main cycle at the next level is completed.

The algorithm, given as In-CloseI below, is invoked with the initial concept
(A,B) = (X, ∅) and initial attribute y = 0.

In-CloseI

ComputeConceptsFrom((A,B), y)

for j ← y upto n− 1 do1

C ← A ∩ {j}↓2

if A = C then3

B ← B ∪ {j}4

else5

if B = C↑j then6

D ← B ∪ {j}7

ComputeConceptsFrom((C,D), j + 1)8

ProcessConcept((A,B))9

Line 1 - Iterate across the context, from starting attribute y up to attribute
n− 1.

Line 2 - Form an extent, C, by intersecting the current extent, A, with the
next column of objects in the context.

Line 3 - If the extent formed, C, equals the extent, A, of the concept whose
intent is currently being closed, then...



Line 4 - ...add the current attribute j to the intent being closed, B.
Line 6 - Otherwise the new partial-closure canonicity test is applied. A small

simplification to the canonicity test can be made because B is being completed
incrementally with j. In other words, at the time of the test, B = Bj = B ∩ Yj .
Therefore, in the canonicity test, B ∩ Yj can be replaced with B. So if the
attributes in B agree with those in the partial-closure C↑j the extent must be a
new one so...

Line 7 - Create a new partial intent D that inherits the attributes of B, plus
the current attribute j.

Line 8 - Pass the new extent C, the partial intent D and the next location
j + 1 to the next level so that concepts from there can be computed and so that
the closure of D can be completed.

Line 9 - Pass concept (A,B) to notional procedure ProcessConcept to pro-
cess it in some way (for example, storing it in a set of concepts). Note that
in In-Close this happens at the end of the procedure, once the main cycle has
completed the closure of the intent, B.

Correctness of In-CloseI - CbO and In-CloseI use the same cycle to form
the same extents, C. The only pertinent difference up to this point is the skipping
of attributes in CbO when j ∈ B (Line 3). However, this test is only to avoid
forming an extent that will fail the canonicity test anyway. Thus to show that
In-CloseI is correct it is sufficient to show that the partial-closure canonicity test
is equivalent to the original test, in other words, given the same extent C, show
that the tests produce the same result:

(B = C↑j ) ≡ (B ∩ Yj = D ∩ Yj)

As previously stated, in In-CloseI the intent B is incrementally closed up to
the current attribute j, thus B = B ∩ Yj , so it is sufficient to show that:

C↑j ≡ D ∩ Yj

Replacing D with C↑, from Line 5 of CbO:

C↑j ≡ C↑ ∩ Yj

Thus, from (1) and (5):

{ y ∈ Yj | ∀x ∈ C : xIy } ≡ { y ∈ Y | ∀x ∈ C : xIy } ∩ Yj .

So on the left side are all the attributes up to j that are related to the extent
and on the right are all the attributes that are related to the extent, intersected
with all the attributes up to j. Both sides are thus clearly equivalent.

In-CloseI call tree - Figure 2 shows the In-CloseI call tree for the simple
example. As in the CbO call tree, a rounded box represents the computation of a
concept and a square box represents the computation of a repeated concept (that



then fails the canonicity test). The notation < Cx, j > is the invocation of the
next level in the form of concept (extent and partial intent) and corresponding
initial attribute. The numbered lines connecting the boxes represent the iteration
of j in the main cycle.

The computations are now partial with intents being completed at the next
level. The lower part of a box, as in the CbO tree, shows the intersections carried
out in the computation of the corresponding concept: the empty-square arrows
are the extent intersections A ∩ {j}↓ and the filled-circle arrows are the closure
intersections in C↑j . In each case the number pointed to represents the attribute
involved. Note that, now, each concept is closed only up to j. Thus the In-Close
call tree shows fewer closure intersections than CbO. If the canonicity test is
passed the intent is closed at the next level, requiring some additional extent
intersections. Altogether there are 59 intersections in the tree, 30 fewer than for
CbO.

Table 1 summarises the performance of each algorithm using the simple con-
text example from Section 2. The table counts and compares the number of full
and partial-closures and the number of extent intersections, A ∩ {j}↓. Because
closure itself involves repeated intersections of an extent with columns of the
context, it is convenient to use the intersection as a measure of performance.
For a full closure, C↑, there are n intersections (in the example, n = 5) and for
a partial-closure, C↑j , there are j − 1 intersections. To perform the evaluation
and create the call-trees, a paper run of each algorithm was carried out, line by
line. These are too lengthy to be presented here but are available as an on-line
appendix [3].
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Table 1. Comparison of closures and intersections for the simple context example

Algorithm Full Partial Extent Total
closures closures intersections: intersections

(intersections) (intersections) A ∩ {j}↓
CbO 15 (75) 14 89
In-CloseI 14 (37) 22 59

7 Performance Evaluation

7.1 Incorporating the partial-closure test into FCbO

Another significant advance in CbO-type algorithms was made with the FCbO
algorithm [17, 26]. FCbO is an enhancement of CbO where a failed canonicity
test is inherited by the next level of recursion. Thus an attribute that has caused
a previous failure can be skipped in subsequent levels, avoiding unnecessary
closures. To provide a performance evaluation that included this feature it was
implemented in In-CloseI to produce In-CloseII.

7.2 Implementations

Implementations were carried out using C++ and a series of tests were performed
using contexts created from real data sets, artificial data sets and randomised
data sets. The experiments were carried out using a standard Windows PC with
an Intel E4600 2.39GHz processor and 3GB of RAM. The times for the programs
include data pre-processing, such as sorting, but exclude administrative aspects,
such as data file input.

To create a level playing field for testing, the algorithms were implemented
with the same two optimisations. Although it would have been possible to create
un-optimised implementations, times for real data sets would be prohibitively
slow and comparison with times presented elsewhere would have been unhelpful.
The two optimisations used were

– Sorting context columns in order of density
– Implementing the context as a bit-array

The practice of column-sorting to improve concept computation is well known
[8]. By doing so, there are fewer canonicity test failures. This is because there is
less chance of finding A before attribute j since the context is less dense before
attribute j.

The use of bit-arrays is well known in computation, allowing a SIMD (Single
Operation - Multiple Data) approach, where, for example, 32 context rows can
be intersected simultaneously using standard 32-bit operations [16].

For the In-Close variants, the full savings of the partial-closure canonicity
test were realised in the implementations: for the test to fail it is only necessary



to find the first attribute that is not canonical. Thus the partial-closure can be
halted as soon as such an attribute is found.

The inherited canonicity failure required the creation of a two-dimensional
array to implement the failed intents that are passed to the next level of re-
cursion. Although the use of pointers reduces the need for copying arrays in
memory, the updating and accessing of the arrays gives rise to some additional
complexity in the computation.

The notional ProcessConcept procedure was implemented simply by storing
the computed concepts. Extents were stored as ‘end-to-end’ lists of integers in a
one-dimensional array to make it possible to store them in the memory available.
Intents were stored in a two-dimensional bit-array, each being stored as n bits.
The use of bits and the fact that the number of attributes is typically much
smaller than objects, makes the memory requirements tractable. For testing
j /∈ B, the Boolean nature of the bit-array version of intents is an efficient
structure, with the test implemented simply as if not(B[j]).

For carrying out the extent intersection, C ← A ∩ {j}↓, it was a simple
case of testing the bit-position in column j of the context for each integer in
A. For the In-Close variants, the size of C (produced as a by-product of the
extent intersection) was used to test the equality of C and A. In effect the test
becomes if |A| = |C|, incurring no additional overhead during the completion
of partial-closures.

For the closure C↑ and partial-closure C↑j , a bit-wise Boolean and operator
was used to ‘parse’ 32 columns of the context at a time, using the integers in A
to identify the rows to test. For the In-Close variants, as soon as C was found
in a column before j and not in B, the partial-closure was halted.

7.3 Data set experiments

A series of experiments were carried out to compare the performance of the
algorithm implementations using a variety of real, artificial and randomised data
sets. These provided a wide range of size and density of formal context to test
the implementations under a variety of conditions. Three of the real data sets are
from the UCI Machine Learning Repository [10]: Mushroom, Adult and Internet
Ads. A fourth data set, Student, is a set of results from a student questionnaire
used to obtain course feedback at Sheffield Hallam University, UK in 2010. The
results are given in Table 2.

Artificial data sets were used that, although partly randomised, were con-
strained by properties of real data sets, such as many valued attributes with a
fixed number of possible values. The results of the artificial data set experiments
are given in Table 3.

Three series of random data experiments were carried out, testing the affect
of changes in the number of attributes, context density, and number of objects.
The results are shown in Figure 3.



Table 2. Real data set results (timings in seconds).

Mushroom Adult Internet Ads Student
|G| × |M | 8, 124× 125 32, 561× 124 3, 279× 1, 565 587× 145

Density 17.36% 11.29% 0.97% 24.50%
#Concepts 226,921 1,388,469 16,570 2, 276, 0243

CbO 0.66 3.06 0.56 32.68
In-CloseI 0.40 1.65 0.12 11.42

FCbO 0.35 2.06 0.21 17.20
In-CloseII 0.29 1.62 0.10 9.38

Table 3. Artificial data set results (timings in seconds).

M7X10G120K M10X30G120K T10I4D100K
|G| × |M | 120, 000× 70 120, 000× 300 100, 000× 1, 000

Density 10.00% 3.33% 1.01%
#Concepts 1,166,343 4,570,498 2,347,376

CbO 2.51 31.26 49.45
In-CloseI 1.26 18.95 16.02

FCbO 1.67 22.33 29.41
In-CloseII 1.39 10.42 11.04

8 Conclusions and Further Work

The results of the performance experiments suggest that the partial-closure
canonicity test significantly improves the efficiency of CbO-type algorithms. Not
only was In-CloseI faster than the basic CbO algorithm, in most cases it was
faster than FCbO. Although FCbO can significantly reduce the number of clo-
sures carried out [26] this appears to be outweighed by the savings in intersections
made by partial-closure.

The results also show that further efficiency is possible by combining ad-
vances in CbO: combining the inherited canonicity test failure of FCbO with the
partial closure canonicity test of In-CloseI to create In-CloseII. In most cases
In-CloseII was faster than In-CloseI, but it is interesting that for the objects
series of randomised experiments the saving was relatively small and for the ar-
tificial data set M7X10G120K, In-CloseI was actually faster. It is quite possible
that the complexity of the inherited failure feature is resulting in some signifi-
cant overheads in the computation, but further work is required to confirm and
investigate this suspicion. It may be enlightening to compare the effort saved
by the reduction of intersection operations with the increased effort of passing,
updating and accessing the inherited failed intents.

Future work is also required in increasing performance through parallel pro-
cessing. Work has been carried out to develop parallel versions of CbO (PCbO)
and FCbO (PFCbO) [16,17] but not as yet for the In-Close variants.



Fig. 3. Comparison of performance with varying number of attributes, density and
objects.

Implementations of In-Close and FCbO are available open-source at Source-
Forge [4, 27].
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