69 research outputs found

    Assignment of the group A rotavirus NSP4 gene into genotypes using a hemi-nested multiplex PCR assay: a rapid and reproducible assay for strain surveillance studies

    Get PDF
    The rotavirus non-structural protein NSP4 has been implicated in a number of biological functions during the rotavirus cellular cycle and pathogenesis, and has been addressed as a target for vaccine development. The NSP4 gene has been classified into six genotypes (A-F). A semi-nested triplex PCR was developed for genotyping the major human NSP4 genotypes (A-C), which are common in human rotavirus strains but are also shared among most mammalian rotavirus strains. A total of 192 previously characterized human strains representing numerous G and P type specificities (such as G1P[8], G1P[4], G2P[4], G3P[3], G3P[8], G3P[9], G4P[6], G4P[8], G6P[4], G6P[9], G6P[14], G8P[10], G8P[14], G9P[8], G9P[11], G10P[11], G12P[6] and G12P[8]) were tested for NSP4 specificity by the collaborating laboratories. An additional 35 animal strains, including the reference laboratory strains SA11 (simian, G3P[2]), NCDV (bovine, G6P[1]), K9 and CU-1 (canine, G3P[3]), together with 31 field isolates (canine, G3P[3]; feline, G3P[9]; porcine, G2P[23], G3P[6], G4P[6], G5P[6], G5P[7], G5P[26], G5P[27], G9P[6] and G9P[7]) were also successfully NSP4-typed. Four human G3P[9] strains and one feline G3P[9] strain were found to possess an NSP4 A genotype, instead of NSP4 C, suggesting a reassortment event between heterologous strains. Routine NSP4 genotyping may help to determine the genomic constellation of rotaviruses of man and livestock, and identify interspecies transmission of heterologous strain

    A Spectacular Bow Shock in the 11 keV Galaxy Cluster Around 3C 438

    Get PDF
    This is a pre-copyedited, author-produced pdf of an article accepted for publication in The Astrophysical Journal following peer review. The version of record, Deanna L. Emery; Ákos BogdĂĄn; Ralph P. Kraft; Felipe Andrade-Santos; William R. Forman; Martin Hardcastle; and Christine Jones, ‘A spectacular bow shock in the 11 keV galaxy cluster around 3C 438’, The Astrophysical Journal (2017) 834(2):159 (7pp), published 10 January 2017, is available at doi: 10.3847/1538-4357/834/2/159 © 2017. The American Astronomical Society. All rights reserved.We present results of deep 153 ks Chandra observations of the hot, 11 keV, galaxy cluster associated with the radio galaxy 3C 438. By mapping the morphology of the hot gas and analyzing its surface brightness and temperature distributions, we demonstrate the presence of a merger bow shock. We identify the presence of two jumps in surface brightness and in density located at ∌\sim400 kpc and ∌\sim800 kpc from the cluster's core. At the position of the inner jump, we detect a factor of 2.3±0.22.3\pm 0.2 density jump, while at the location of the outer jump, we detect a density drop of a factor of 3.5±0.73.5 \pm 0.7. Combining this with the temperature distribution within the cluster, we establish that the pressure of the hot gas is continuous at the 400 kpc jump, while there is a factor of 6.2±2.86.2 \pm 2.8 pressure discontinuity at 800 kpc jump. From the magnitude of the outer pressure discontinuity, using the Rankine-Hugoniot jump conditions, we determine that the sub-cluster is moving at M=2.3±0.5M = 2.3\pm 0.5, or approximately 2600±5652600\pm 565 km/s through the surrounding intracluster medium, creating the conditions for a bow shock. Based on these findings, we conclude that the pressure discontinuity is likely the result of an ongoing major merger between two massive clusters. Since few observations of bow shocks in clusters have been made, this detection can contribute to the study of the dynamics of cluster mergers, which offers insight on how the most massive clusters may have formed.Peer reviewe

    The Circum-Galactic Medium of Massive Spirals. II. Probing the Nature of Hot Gaseous Halo around the Most Massive Isolated Spiral Galaxies

    Get PDF
    We present the analysis of the XMM-Newton data of the Circum-Galactic Medium of MASsive Spirals (CGM-MASS) sample of six extremely massive spiral galaxies in the local universe. All the CGM-MASS galaxies have diffuse X-ray emission from hot gas detected above the background extending \sim (30\mbox{--}100)\,\mathrm{kpc} from the galactic center. This doubles the existing detection of such extended hot CGM around massive spiral galaxies. The radial soft X-ray intensity profile of hot gas can be fitted with a ÎČ-function, with the slope typically in the range of \beta =0.35\mbox{--}0.55. This range, as well as those ÎČ values measured for other massive spiral galaxies, including the Milky Way (MW), are in general consistent with X-ray luminous elliptical galaxies of similar hot gas luminosity and temperature, and with those predicted from a hydrostatic-isothermal gaseous halo. Hot gas in such a massive spiral galaxy tends to have temperature comparable to its virial value, indicating the importance of gravitational heating. This is in contrast to lower mass galaxies, where hot gas temperature tends to be systematically higher than the virial one. The ratio of the radiative cooling to free fall timescales of hot gas is much larger than the critical value of ~10 throughout the entire halos of all the CGM-MASS galaxies, indicating the inefficiency of gas cooling and precipitation in the CGM. The hot CGM in these massive spiral galaxies is thus most likely in a hydrostatic state, with the feedback material mixed with the CGM, instead of escaping out of the halo or falling back to the disk. We also homogenize and compare the halo X-ray luminosity measured for the CGM-MASS galaxies and other galaxy samples and discuss the "missing" galactic feedback detected in these massive spiral galaxies

    An FPGA Implementation to Detect Selective Cationic Antibacterial Peptides

    Get PDF
    Exhaustive prediction of physicochemical properties of peptide sequences is used in different areas of biological research. One example is the identification of selective cationic antibacterial peptides (SCAPs), which may be used in the treatment of different diseases. Due to the discrete nature of peptide sequences, the physicochemical properties calculation is considered a high-performance computing problem. A competitive solution for this class of problems is to embed algorithms into dedicated hardware. In the present work we present the adaptation, design and implementation of an algorithm for SCAPs prediction into a Field Programmable Gate Array (FPGA) platform. Four physicochemical properties codes useful in the identification of peptide sequences with potential selective antibacterial activity were implemented into an FPGA board. The speed-up gained in a single-copy implementation was up to 108 times compared with a single Intel processor cycle for cycle. The inherent scalability of our design allows for replication of this code into multiple FPGA cards and consequently improvements in speed are possible. Our results show the first embedded SCAPs prediction solution described and constitutes the grounds to efficiently perform the exhaustive analysis of the sequence-physicochemical properties relationship of peptides

    Hot atmospheres of galaxies, groups, and clusters of galaxies

    Full text link
    Most of the ordinary matter in the local Universe has not been converted into stars but resides in a largely unexplored diffuse, hot, X-ray emitting plasma. It pervades the gravitational potentials of massive galaxies, groups and clusters of galaxies, as well as the filaments of the cosmic web. The physics of this hot medium, such as its dynamics, thermodynamics and chemical composition can be studied using X-ray spectroscopy in great detail. Here, we present an overview of the basic properties and discuss the self similarity of the hot "atmospheres" permeating the gravitational halos from the scale of galaxies, through groups, to massive clusters. Hot atmospheres are stabilised by the activity of supermassive black holes and, in many ways, they are of key importance for the evolution of their host galaxies. The hot plasma has been significantly enriched in heavy elements by supernovae during the period of maximum star formation activity, probably more than 10 billion years ago. High resolution X-ray spectroscopy just started to be able to probe the dynamics of atmospheric gas and future space observatories will determine the properties of the currently unseen hot diffuse medium throughout the cosmic web.Comment: Accepted for publication in the book "Reviews in Frontiers of Modern Astrophysics: From Space Debris to Cosmology" (eds Kabath, Jones and Skarka; publisher Springer Nature) funded by the European Union Erasmus+ Strategic Partnership grant "Per Aspera Ad Astra Simul" 2017-1-CZ01-KA203-03556

    Intraosseous venous malformation of the zygomatico-orbital complex. Case report and literature review with focus on confusions in vascular lesion terms.

    No full text
    Intraosseous vascular malformations (VascM) of the facial skeleton are rare entities, raising difficulties even today in their treatment. We present a case for zygomatic intraosseous venous malformation of traumatic etiology with growth dynamics presentation and a multidisciplinary treatment approach, with intravascular embolization surgical ablation and primary reconstructruction using a titanium patient-specific implant (PSI), and a review of the literature for intraosseous vascular lesions of the facial skeleton focusing on the diagnostic syntagms used by the involved medical personnel, to shed light on the confusions over these terms

    Luminosity functions of LMXBs in different stellar environments

    Get PDF
    Original article can be found at: http://www.aanda.org/ Copyright The European Southern ObservatoryAims. Based on the archival data from the Chandra observations of nearby galaxies, we study different sub populations of low-mass X-ray binaries (LMXBs) - dynamically formed systems in globular clusters (GCs) and in the nucleus of M 31 and (presumably primordial) X-ray binaries in the fields of galaxies. Our aim is to produce accurate luminosity distributions of X-ray binaries in different environments, suitable for quantitative comparison with each other and with the output of population synthesis calculations. Methods. Our sample includes seven nearby galaxies (M 31, Maffei 1, Centaurus A, M 81, NGC 3379, NGC 4697, and NGC 4278) and the Milky Way, which together provide relatively uniform coverage down to the luminosity limit of 10(35) erg s(-1). In total we have detected 185 LMXBs associated with GCs, 35 X-ray sources in the nucleus of M 31, and 998 field sources of which similar to 365 are expected to be background AGN. We combine these data, taking special care to accurately account for X-ray and optical incompleteness corrections and the removal of the contamination from the cosmic X-ray background sources, to produce luminosity distributions of X-ray binaries in different environments to far greater accuracy than has been obtained previously. Results. We found that luminosity distributions of GC and field LMXBs differ throughout the entire luminosity range, the fraction of faint (log(L-X) < 37) sources among the former being similar to 4 times less than in the field population. The X-ray luminosity function (XLF) of sources in the nucleus of M 31 is similar to that of GC sources at the faint end but differs at the bright end, with the M 31 nucleus hosting significantly fewer bright sources. We discuss the possible origin and potential implications of these results.Peer reviewe
    • 

    corecore