122 research outputs found

    Evaluating the impact of Ventilation strategy and Window Opening Area on Overheating Issues

    Get PDF
    Thermal mass has the benefit of regulating energy in buildings and generates potential savings in energy and CO2 emissions. The result of the effect of climate change will be more intense and longer periods of summer heat waves. Use of the building thermal mass can reduce overheating in summer and minimise the need for cooling energy, reducing energy consumption and CO2 emissions. Night ventilation is one of the key factors to maximise the benefits of thermal mass in buildings but due to issues in security and pollution, in many situations windows can only be effectively opened during occupied hours. Cross ventilation provides gains versus the use of single side ventilation but it is not always possible to have it. The main aim of this study was to evaluate the influence of window opening area and night ventilation on the thermal mass benefits to overheating by exposing the thermal mass. A second aim was to understand the further benefits that could be obtained by using cross ventilation in reducing overheating This study was based on dynamic thermal simulations to analyse the overheating performance of a test room with covered and exposed thermal mass. The testing room was simulated for a range of window openings from 5% to 40% area opening with single-sided and cross natural ventilation. Fifteen building simulation models were performed using the Energyplus plugin in DesignBuilder to evaluate the effect on the thermal mass behaviour to mitigate overheating according to different window opening areas during occupied hours in two different natural ventilation conditions. The simulation results show that by exposing and making use of the room thermal mass, the number of hours above 28ºC can be reduced with the reduction being proportional to the window opening area. The CIBSE TM52 overheating assessment is only passed by using window opening areas above 20% with a cross ventilation strategy, but they could generate occupants discomfort

    Numerical investigation of evaporative cooling strategies on the aero-thermal performance of courtyard buildings in hot-dry climates

    Get PDF
    In hot and dry urban environments, courtyards help mitigate extreme heat and influence the urban microclimate. These structures not only provide light and private outdoor spaces but also aid in mitigating the urban heat island (UHI) effect through improved airflow and evapotranspiration. Courtyards, being central open-air areas enclosed by buildings, are crucial in creating opportunities for natural ventilation driven by wind and buoyancy-induced forces, thus serving as a microclimatic regulator. This study investigates the role of courtyards in modulating their microclimate and adjacent indoor areas by integrating evaporative cooling strategies to enhance cooling in these spaces. While numerous studies have been conducted on the role of water bodies in evaporative cooling, the aero-thermal impact on adjacent indoor spaces remains less understood. Addressing this gap, the present research explores the effect of an evaporative cooling system on the wind and thermal conditions within a courtyard and examines different natural ventilation modes, namely, single-sided and crossflow ventilation, in indoor spaces. A computational fluid dynamics (CFD) model, validated against wind tunnel experimental data, was employed to simulate various evaporative cooling water spray configurations. The results reveal complex courtyard microclimates with diverse cooling effects influenced by room orientation and floor level. Specifically, in single-sided ventilated courtyards, water sprays significantly improved the indoor thermal environment, with the average temperature across all rooms decreased by 2.06 °C, and humidity increased by 4.29 %. However, in cross-ventilated courtyards, water sprays' cooling and humidifying effects were relatively less effective. This research underscores the potential of evaporative cooling technology in improving the microclimate of courtyards, with practical applications extending to urban design and architecture. By tailoring cooling strategies to specific courtyard configurations, urban planners and architects significantly improve indoor comfort levels and energy efficiency

    Impact of Climate Change on the Heating Demand of Buildings. A District Level Approach

    Get PDF
    There is no doubt that during recent years, the developing countries are in urgent demand of energy, which means the energy generation and the carbon emissions increase accumulatively. The 40 % of the global energy consumption per year comes from the building stock. Considering the predictions regarding future climate due to climate change, a good understanding on the energy use due to future climate is required. The aim of this study was to evaluate the impact of future weather in the heating demand and carbon emissions for a group of buildings at district level, focusing on two areas of London in the United Kingdom. The methodological approach involved the use of geospatial data for the case study areas, processed with Python programming language through Anaconda and Jupyter notebook, generation of an archetype dataset with energy performance data from TABULA typology and the use of Python console in QGIS to calculate the heating demand in the reference weather data, 2050 and 2100 in accordance with RCP 4.5 and RCP 8.5 scenarios. A validated model was used for the district level heating demand calculation. On the one hand, the results suggest that a mitigation of carbon emissions under the RCP4.5 scenario will generate a small decrease on the heating demand at district level, so slightly similar levels of heating generation must continue to be provided using sustainable alternatives. On the other hand, following the RCP 8.5 scenario of carbon emission carrying on business as usual will create a significant reduction of heating demand due to the rise on temperature but with the consequent overheating in summer, which will shift the energy generation problem. The results suggest that adaptation of the energy generation must start shifting to cope with higher temperatures and a different requirement of delivered energy from heating to cooling due to the effect of climate change

    Evaluating the Influence of Program Type Building Parameters on UBEM: A Case Study for the Residential Stock in Nottingham, UK

    Get PDF
    In the midst of rising concern about the implications of climate change, the European Union and the United Kingdom appears to be on the verge of establishing policies to reduce greenhouse gas emissions. The urban building energy models could inform energy analyzers and decision makers for the future results that specific comprehensive energy refurbishment strategies and energy supply infrastructure changes might have. Nonetheless, the data challenges that emerge are various. The lack of data availability and reliability, the data computing issue and data privacy are, only, some of the challenges of building energy modelling, which are intensified in urban scale. Therefore, the investigation of the influence of building parameters on the energy demand results is deemed necessary, in order both to understand the minimum data requirements for urban energy modelling, and the impact of them before the design phase for the new constructions. Therefore, this Paper’s intention is to inform stakeholders from energy analysts to data capture companies, about the influential building parameters, as regards to the Program Type, such as the infiltration, the domestic hot water and the ventilation. An UBEM physics-based approach, for the estimation of the annual energy demand, is implemented with the use of Grasshopper software, and the visualization of the results is done with the QGIS software. The case study is in Nottingham city, in UK, and the energy demand for the whole year of the dwelling stock is estimated. Then, a sensitivity analysis for the influence of the Program Type building parameters is presented. The results have shown that the most impactful parameter among the three under-tested is the infiltration (airtightness) of a dwellin

    Assessing Urban Building Energy Demand in Future Climate Scenarios: A Case Study in Nottingham,UK

    Get PDF
    The most recent report on climate change from the IPCC (Intergovernmental Panel on Climate Change), in 2023, states that urgent action is needed to tackle global warming. The IPCC points out that by 2040, there is a greater than 50% risk that the temperature worldwide will approach or exceed 1.5 degrees Celsius (2.7 degrees Fahrenheit). On top of that, under high-emissions scenarios, the global temperature could increase to that borderline even earlier, before 2037. Since building stock accounts for 40% of total global energy usage and 33% of greenhouse gas emissions each year, their continuous high demand for energy leads to the rapid growth of CO2 emissions. Accounting for that, the energy performance of buildings in urban scale under the future climate scenarios is a significant factor in immediately assisting with climate change mitigation. The purpose of this project was to estimate the influence of the climate change on the energy demand of two neighbourhoods in Nottingham, in United Kingdom, by comparing their current energy performance to the future. The methodology consists of the use of geospatial data for the building geometric parameters, in combination with energy-related data from the EPC (Energy Performance Certificate) dataset. The datasets were processed with Python programming language and the QGIS software, and the final dataset was imported to an energy model that was constructed with the use of Rhino and Grasshopper, with EnergyPlus simulations on the background. The model was run under 9 different climate scenarios, namely under the present, under 2050s and 2080s for 4 different future scenarios each year. The results have shown that the absence of building stock renovation will lead to an accountable decrease in the heating demand of buildings, while the risk of overheating will be critically escalating. </em

    Modelling of content-aware indicators for effective determination of shot boundaries in compressed MPEG videos

    Get PDF
    In this paper, a content-aware approach is proposed to design multiple test conditions for shot cut detection, which are organized into a multiple phase decision tree for abrupt cut detection and a finite state machine for dissolve detection. In comparison with existing approaches, our algorithm is characterized with two categories of content difference indicators and testing. While the first category indicates the content changes that are directly used for shot cut detection, the second category indicates the contexts under which the content change occurs. As a result, indications of frame differences are tested with context awareness to make the detection of shot cuts adaptive to both content and context changes. Evaluations announced by TRECVID 2007 indicate that our proposed algorithm achieved comparable performance to those using machine learning approaches, yet using a simpler feature set and straightforward design strategies. This has validated the effectiveness of modelling of content-aware indicators for decision making, which also provides a good alternative to conventional approaches in this topic

    What does it take to make integrated care work? A ‘cookbook’ for large-scale deployment of coordinated care and telehealth

    Get PDF
    The Advancing Care Coordination & Telehealth Deployment (ACT) Programme is the first to explore the organisational and structural processes needed to successfully implement care coordination and telehealth (CC&TH) services on a large scale. A number of insights and conclusions were identified by the ACT programme. These will prove useful and valuable in supporting the large-scale deployment of CC&TH. Targeted at populations of chronic patients and elderly people, these insights and conclusions are a useful benchmark for implementing and exchanging best practices across the EU. Examples are: Perceptions between managers, frontline staff and patients do not always match; Organisational structure does influence the views and experiences of patients: a dedicated contact person is considered both important and helpful; Successful patient adherence happens when staff are engaged; There is a willingness by patients to participate in healthcare programmes; Patients overestimate their level of knowledge and adherence behaviour; The responsibility for adherence must be shared between patients and health care providers; Awareness of the adherence concept is an important factor for adherence promotion; The ability to track the use of resources is a useful feature of a stratification strategy, however, current regional case finding tools are difficult to benchmark and evaluate; Data availability and homogeneity are the biggest challenges when evaluating the performance of the programmes

    The Photophysics of the Carrier of Extended Red Emission

    Get PDF
    Interstellar dust contains a component which reveals its presence by emitting a broad, unstructured band of light in the 540 to 950 nm wavelength range, referred to as Extended Red Emission (ERE). The presence of interstellar dust and ultraviolet photons are two necessary conditions for ERE to occur. This is the basis for suggestions which attribute ERE to an interstellar dust component capable of photoluminescence. In this study, we have collected all published ERE observations with absolute-calibrated spectra for interstellar environments, where the density of ultraviolet photons can be estimated reliably. In each case, we determined the band-integrated ERE intensity, the wavelength of peak emission in the ERE band, and the efficiency with which absorbed ultraviolet photons are contributing to the ERE. The data show that radiation is not only driving the ERE, as expected for a photoluminescence process, but is modifying the ERE carrier as manifested by a systematic increase in the ERE band's peak wavelength and a general decrease in the photon conversion efficiency with increasing densities of the prevailing exciting radiation. The overall spectral characteristics of the ERE and the observed high quantum efficiency of the ERE process are currently best matched by the recently proposed silicon nanoparticle (SNP) model. Using the experimentally established fact that ionization of semiconductor nanoparticles quenches their photoluminescence, we proceeded to test the SNP model by developing a quantitative model for the excitation and ionization equilibrium of SNPs under interstellar conditions for a wide range of radiation field densities.Comment: 42 p., incl. 8 fig. Accepted for publication by Ap

    The nonlinear analysis of an innovative slit reinforced concrete water tower in seismic regions

    Get PDF
    Water towers are widely used in our society as one of water distribution facilities within water network systems. In the event of a severe earthquake, however, a single plastic hinge that occurs in a water tower could cause its total collapse before nonlinear resources of the rest of the tower remains fully utilised. This research presents an innovative technique for the assembly of a water tower using the slits in its reinforced concrete shaft for the purpose of mitigating the seismic response. Slit shafts were designed to have four slits at 90 degree intervals along the full height of the shafts. The shaft parts were connected to each other at the bottom, top and every five meters with coupling beams. The slit width was used as a variable in this study which varied between 50 mm and 2000 mm. The nonlinear seismic performance of the proposed slit towers was analysed by means of a finite element approach with respect to soil types defined in Eurocode 8 and seismic behaviour were compared to the solid water tower. A detailed observation of the compression and tension stress distributions with respect to the slit width was performed. The obtained analytical results revealed that slit width in the reinforced concrete tower affect the failure mode and stiffness of a water tower significantly. With an appropriate design, the conversion of a solid water tower into a slit tower can significantly increase its ductility under seismic action without significantly compromising its bearing capacity. The results showed that contours of tension and compression stress intensity in shafts, which could lead to a failure of water towers, highly depended on the slit width. In the solid water tower, the stress concentration dominated at the base of the shaft, however in the narrow slit water towers the stresses were equally distributed along the height of the shafts. Also, the stresses were mostly concentrated at the top of the shafts in the wide slit water towers. Conclusively, the results provided useful information regarding the compression stress distribution along the slit shafts in the water towers which can be used in obtaining an optimum slit shaft design for different soil types
    corecore