2,883 research outputs found

    Characteristics of the Menstrual Cycle After Discontinuation of Oral Contraceptives

    Get PDF
    Background: Menstrual cycle function may continue to be altered after discontinuation of oral contraceptives (OC). Few studies have been published on the effects of recent OC use on menstrual cycle parameters; none have examined characteristics of the menstrual flow or the quality of cervical mucus. The purpose of this retrospective matched cohort study is to assess biomarkers of the menstrual cycle after discontinuation of OCs. Methods: Among a sample of women who daily recorded observations of menstrual cycle biomarkers, 70 women who had recently discontinued OCs were randomly matched by age and parity with 70 women who had not used OCs for at least 1 year. Outcomes investigated included overall cycle length, length of the luteal phase, estimated day of ovulation, duration of menstrual flow, menstrual intensity, and mucus score. Differences between recent OC users and controls were assessed using random effects modeling. Results: Recent OC users had statistically significantly lower scores for mucus quality for cycles 1 and 2. Additionally, OC users had a later estimated day of ovulation that was statistically significant in cycle 2 and a decreased intensity of menstrual flow that was significant in the first four cycles (difference = −0.48 days). In random effects modeling, all these parameters were significantly different for the first six cycles combined. Conclusions: Menstrual cycle biomarkers are altered for at least two cycles after discontinuation of OCs, and this may help explain the temporary decrease in fecundity associated with recent OC use

    Internal kinematics of spiral galaxies in distant clusters. Part II. Observations and data analysis

    Full text link
    We have conducted an observing campaign with FORS at the ESO-VLT to explore the kinematical properties of spiral galaxies in distant galaxy clusters. Our main goal is to analyse transformation- and interaction processes of disk galaxies within the special environment of clusters as compared to the hierarchical evolution of galaxies in the field. Spatially resolved MOS-spectra have been obtained for seven galaxy clusters at 0.3<z<0.6 to measure rotation velocities of cluster members. For three of the clusters, Cl0303+17, Cl0413-65, and MS1008-12, for which we presented results including a TF-diagram in Ziegler et al. 2003, we describe here in detail the observations and data analysis. Each of them was observed with two setups of the standard FORS MOS-unit.With typical exposure times of >2 hours we reach an S/N>5 in the emission lines appropriate for the deduction of the galaxies' internal rotation velocities from [OII], Hbeta, or [OIII] profiles. Preselection of targets was done on the basis of available redshifts as well as from photometric and morphological information gathered from own observations, archive data, and from the literature. Emphasis was laid on the definition of suitable setups to avoid the typical restrictions of the standard MOS unit for this kind of observations. In total we assembled spectra of 116 objects of which 50 turned out to be cluster members. Position velocity diagrams, finding charts as well as tables with photometric, spectral, and structural parameters of individual galaxies are presented.Comment: 18 pages, 6 figures, accepted for publication in Astronomy and Astrophysics. A version with full resolution figures can be downloaded from http://www.uni-sw.gwdg.de/~vwgroup/publications.htm

    Chandra and XMM-Newton Observations of RDCS1252.9-2927, A Massive Cluster at z=1.24

    Get PDF
    We present deep Chandra and XMM obervations of the galaxy cluster RDCS1252.9-2927, which was selected from the ROSAT Deep Cluster Survey (RDCS) and confirmed by extensive spectroscopy with the VLT at redshift z=1.237. With the Chandra data, the X-ray emission from the intra-cluster medium is well resolved and traced out to 500 kpc, thus allowing a measurement of the physical properties of the gas with unprecedented accuracy at this redshift. We detect a clear 6.7 keV Iron K line in the Chandra spectrum providing a redshift within 1% of the spectroscopic one. By augmenting our spectroscopic analysis with the XMM data (MOS detectors only), we significantly narrow down the 1 sigma error bar to 10% for the temperature and 30% for the metallicity, with best fit values kT = 6.0(+0.7,-0.5) keV, Z = 0.36(+0.12,-0.10) Z_sun. In the likely hypothesis of hydrostatic equilibrium, we measure a total mass of M_{500} = (1.9+-0.3)10^14 h_70^{-1}M_sun within R_{Delta=500} = 536 kpc. Overall, these observations imply that RDCS1252.9-2927 is the most X-ray luminous and likely the most massive bona-fide cluster discovered to date at z>1. When combined with current samples of distant clusters, these data lend further support to a mild evolution of the cluster scaling relations, as well the metallicity of the intra-cluster gas. Inspection of the cluster mass function in the current cosmological concordance model (h,Omega_m,Omega_Lambda)=(0.7,0.3,0.7) and sigma_8=0.7-0.8 shows that RDCS1252.9-2927 is an M* cluster at z=1.24, in keeping with number density expectations in the RDCS survey volume.Comment: 9 pages, 1 color figure (fig6.jpg). The Astronomical Journal in press (Jan 2004). Full resolution preprint available at http://www.eso.org/~prosati/RDCS1252

    The Infrared Luminosity Function of Galaxies in the Coma Cluster

    Get PDF
    An infrared survey of the central 650 arcmin2^2 of the Coma cluster is used to determine the HH band luminosity function for the cluster. Redshifts are available for all galaxies in the survey with H<14.5H < 14.5, and for this sample we obtain a good fit to a Schechter function with H=11.13H^*=11.13 and α=0.78\alpha=-0.78. These luminosity function parameters are similar to those measured for field galaxies in the infrared, which is surprising considering the very different environmental densities and, presumably, merger histories for field galaxies. For fainter galaxies, we use two independent techniques to correct for field galaxy contamination in the cluster population: the BRB-R color-magnitude relation and an estimate for the level of background and foreground contamination from the literature. Using either method we find a steep upturn for galaxies with 14<H<1614 < H < 16, with slope α1.7\alpha \simeq 1.7.Comment: 15 pages, 2 figures Accepted by ApJ Letter

    The Cluster and Field Galaxy AGN Fraction at z = 1 to 1.5: Evidence for a Reversal of the Local Anticorrelation Between Environment and AGN Fraction

    Full text link
    The fraction of cluster galaxies that host luminous AGN is an important probe of AGN fueling processes, the cold ISM at the centers of galaxies, and how tightly black holes and galaxies co-evolve. We present a new measurement of the AGN fraction in a sample of 13 clusters of galaxies (M >= 10^{14} Msun) at 1<z<1.5 selected from the Spitzer/IRAC Shallow Cluster Survey, as well as the field fraction in the immediate vicinity of these clusters, and combine these data with measurements from the literature to quantify the relative evolution of cluster and field AGN from the present to z~3. We estimate that the cluster AGN fraction at 1<z<1.5 is f_A = 3.0^{+2.4}_{-1.4}% for AGN with a rest-frame, hard X-ray luminosity greater than L_{X,H} >= 10^{44} erg/s. This fraction is measured relative to all cluster galaxies more luminous than M*_{3.6}(z)+1, where M*_{3.6}(z) is the absolute magnitude of the break in the galaxy luminosity function at the cluster redshift in the IRAC 3.6um bandpass. The cluster AGN fraction is 30 times greater than the 3sigma upper limit on the value for AGN of similar luminosity at z~0.25, as well as more than an order of magnitude greater than the AGN fraction at z~0.75. AGN with L_{X,H} >= 10^{43} erg/s exhibit similarly pronounced evolution with redshift. In contrast with the local universe, where the luminous AGN fraction is higher in the field than in clusters, the X-ray and MIR-selected AGN fractions in the field and clusters are consistent at 1<z<1.5. This is evidence that the cluster AGN population has evolved more rapidly than the field population from z~1.5 to the present. This environment-dependent AGN evolution mimics the more rapid evolution of star-forming galaxies in clusters relative to the field.Comment: ApJ Accepted. 16 pages, 8 figures in emulateapj forma

    Protoclusters associated with z > 2 radio galaxies. I. Characteristics of high redshift protoclusters

    Get PDF
    [Abridged] We present the results of a large program conducted with the Very Large Telescope and Keck telescope to search for forming clusters of galaxies near powerful radio galaxies at 2.0 < z < 5.2. We obtained narrow- and broad-band images of nine radio galaxies and their surroundings. The imaging was used to select candidate Lyman alpha emitting galaxies in ~3x3 Mpc^2 areas near the radio galaxies. A total of 337 candidate emitters were found with a rest-frame Lyman alpha equivalent width of EW_0 > 15 A and Sigma = EW_0/Delta EW_0 > 3. Follow-up spectroscopy confirmed 168 Lyman alpha emitters near eight radio galaxies. The success rate of our selection procedure is 91%. At least six of our eight fields are overdense in Lyman alpha emitters by a factor 3-5. Also, the emitters show significant clustering in velocity space. In the overdense fields, the width of the velocity distributions of the emitters is a factor 2-5 smaller than the width of the narrow-band filters. Taken together, we conclude that we have discovered six forming clusters of galaxies (protoclusters). We estimate that roughly 75% of powerful (L_2.7GHz > 10^33 erg/s/Hz/sr) high redshift radio galaxies reside in a protocluster, with a sizes of at least 1.75 Mpc. We estimate that the protoclusters have masses in the range 2-9 x 10^14 Msun and they are likely to be progenitors of present-day (massive) clusters of galaxies. For the first time, we have been able to estimate the velocity dispersion of cluster progenitors from z~5 to ~2. The velocity dispersion of the emitters increases with cosmic time, in agreement with the dark matter velocity dispersion in numerical simulations of forming massive clusters.Comment: 30 pages, 20 figures. Published in A&A. The article with high resolution figures is available at http://www.ast.cam.ac.uk/~venemans/research/datapaper/index.htm

    Scaling Relations and Overabundance of Massive Clusters at z>~1 from Weak-Lensing Studies with HST

    Get PDF
    We present weak gravitational lensing analysis of 22 high-redshift (z >~1) clusters based on Hubble Space Telescope images. Most clusters in our sample provide significant lensing signals and are well detected in their reconstructed two-dimensional mass maps. Combining the current results and our previous weak-lensing studies of five other high-z clusters, we compare gravitational lensing masses of these clusters with other observables. We revisit the question whether the presence of the most massive clusters in our sample is in tension with the current LambdaCDM structure formation paradigm. We find that the lensing masses are tightly correlated with the gas temperatures and establish, for the first time, the lensing mass-temperature relation at z >~ 1. For the power law slope of the M-TX relation (M propto T^{\alpha}), we obtain \alpha=1.54 +/- 0.23. This is consistent with the theoretical self-similar prediction \alpha=3/2 and with the results previously reported in the literature for much lower redshift samples. However, our normalization is lower than the previous results by 20-30%, indicating that the normalization in the M-TX relation might evolve. After correcting for Eddington bias and updating the discovery area with a more conservative choice, we find that the existence of the most massive clusters in our sample still provides a tension with the current Lambda CDM model. The combined probability of finding the four most massive clusters in this sample after marginalization over current cosmological parameters is less than 1%.Comment: ApJ in press. See http://www.supernova.lbl.gov for additional information pertaining to the HST Cluster SN Surve
    corecore