919 research outputs found

    Out of plane analysis for composite structures

    Get PDF
    Simple two dimensional analysis techniques were developed to aid in the design of strong joints for integrally stiffened/bonded composite structures subjected to out of plane loads. It was found that most out of plane failures were due to induced stresses arising from rapid changes in load path direction or geometry, induced stresses due to changes in geometry caused by buckling, or direct stresses produced by fuel pressure or bearing loads. While the analysis techniques were developed to address a great variety of out of plane loading conditions, they were primarily derived to address the conditions described above. The methods were developed and verified using existing element test data. The methods were demonstrated using the data from a test failure of a high strain wingbox that was designed, built, and tested under a previous program. Subsequently, a set of design guidelines were assembled to assist in the design of safe, strong integral composite structures using the analysis techniques developed

    Status of Acropora palmata Populations off the Coast of South Caicos, Turks and Caicos Islands

    Get PDF
    This study is the first detailed assessment of A. palmata populations of the Turks and Caicos Islands. A total of 203 individual colonies and 62 thickets were tagged on five shallow reefs. Depth, percentages of living tissue, recent mortality and old skeleton were estimated. Presence of disease and predatory snails was noted, and disease spread and grazing rates of the snails estimated. Colonies were found in depths of 0.2 - 4 m. Living tissue for individual colonies (75.9% ± 2.2 SE) was significantly greater than for thickets (58.6% ± 3.6) and in both cases exceeded old skeleton (individuals: 22.7% ± 2.1 SE, thickets: 38.0% ± 3.4 SE). Percentage of recent mortality was very low (individuals: 1.3% ± 0.3 SE, thickets: 3.4% ± 0.7%). We found WBD (n = 2), white pox disease a (WPDa) (n = 7) and white pox disease b (WPDb) (n = 14) with greatly varying spreading rates. The WBD infected colonies showed an atypical spread from the top of the branch towards the base. Coralliophila abbreviata and C. caribaea affected 3 .7 54.7% of the populations (grazing rate: 4.29 cm 2 /day/snail ± 1.16 SE). South Caicos’ A. palmata populations are still in good condition, though increasing human disturbances combined with disease and predatory snails may threaten these populations

    Development and analysis of the Software Implemented Fault-Tolerance (SIFT) computer

    Get PDF
    SIFT (Software Implemented Fault Tolerance) is an experimental, fault-tolerant computer system designed to meet the extreme reliability requirements for safety-critical functions in advanced aircraft. Errors are masked by performing a majority voting operation over the results of identical computations, and faulty processors are removed from service by reassigning computations to the nonfaulty processors. This scheme has been implemented in a special architecture using a set of standard Bendix BDX930 processors, augmented by a special asynchronous-broadcast communication interface that provides direct, processor to processor communication among all processors. Fault isolation is accomplished in hardware; all other fault-tolerance functions, together with scheduling and synchronization are implemented exclusively by executive system software. The system reliability is predicted by a Markov model. Mathematical consistency of the system software with respect to the reliability model has been partially verified, using recently developed tools for machine-aided proof of program correctness

    Voltage rectification by a SQUID ratchet

    Full text link
    We argue that the phase across an asymmetric dc SQUID threaded by a magnetic flux can experience an effective ratchet (periodic and asymmetric) potential. Under an external ac current, a rocking ratchet mechanism operates whereby one sign of the time derivative of the phase is favored. We show that there exists a range of parameters in which a fixed sign (and, in a narrower range, even a fixed value) of the average voltage across the ring occurs, regardless of the sign of the external current dc component.Comment: 4 pages, 4 EPS figures, uses psfig.sty. Revised version, to appear in Physical Review Letters (26 August 1996

    Focused Local Search for Random 3-Satisfiability

    Full text link
    A local search algorithm solving an NP-complete optimisation problem can be viewed as a stochastic process moving in an 'energy landscape' towards eventually finding an optimal solution. For the random 3-satisfiability problem, the heuristic of focusing the local moves on the presently unsatisfiedclauses is known to be very effective: the time to solution has been observed to grow only linearly in the number of variables, for a given clauses-to-variables ratio α\alpha sufficiently far below the critical satisfiability threshold αc4.27\alpha_c \approx 4.27. We present numerical results on the behaviour of three focused local search algorithms for this problem, considering in particular the characteristics of a focused variant of the simple Metropolis dynamics. We estimate the optimal value for the ``temperature'' parameter η\eta for this algorithm, such that its linear-time regime extends as close to αc\alpha_c as possible. Similar parameter optimisation is performed also for the well-known WalkSAT algorithm and for the less studied, but very well performing Focused Record-to-Record Travel method. We observe that with an appropriate choice of parameters, the linear time regime for each of these algorithms seems to extend well into ratios α>4.2\alpha > 4.2 -- much further than has so far been generally assumed. We discuss the statistics of solution times for the algorithms, relate their performance to the process of ``whitening'', and present some conjectures on the shape of their computational phase diagrams.Comment: 20 pages, lots of figure

    Statistical mechanics of the vertex-cover problem

    Full text link
    We review recent progress in the study of the vertex-cover problem (VC). VC belongs to the class of NP-complete graph theoretical problems, which plays a central role in theoretical computer science. On ensembles of random graphs, VC exhibits an coverable-uncoverable phase transition. Very close to this transition, depending on the solution algorithm, easy-hard transitions in the typical running time of the algorithms occur. We explain a statistical mechanics approach, which works by mapping VC to a hard-core lattice gas, and then applying techniques like the replica trick or the cavity approach. Using these methods, the phase diagram of VC could be obtained exactly for connectivities c<ec<e, where VC is replica symmetric. Recently, this result could be confirmed using traditional mathematical techniques. For c>ec>e, the solution of VC exhibits full replica symmetry breaking. The statistical mechanics approach can also be used to study analytically the typical running time of simple complete and incomplete algorithms for VC. Finally, we describe recent results for VC when studied on other ensembles of finite- and infinite-dimensional graphs.Comment: review article, 26 pages, 9 figures, to appear in J. Phys. A: Math. Ge

    Transverse phase-locking in fully frustrated Josephson junction arrays: a new type of fractional giant steps

    Full text link
    We study, analytically and numerically, phase locking of driven vortex lattices in fully-frustrated Josephson junction arrays at zero temperature. We consider the case when an ac current is applied {\it perpendicular} to a dc current. We observe phase locking, steps in the current-voltage characteristics, with a dependence on external ac-drive amplitude and frequency qualitatively different from the Shapiro steps, observed when the ac and dc currents are applied in parallel. Further, the critical current increases with increasing transverse ac-drive amplitude, while it decreases for longitudinal ac-drive. The critical current and the phase-locked current step width, increase quadratically with (small) amplitudes of the ac-drive. For larger amplitudes of the transverse ac-signal, we find windows where the critical current is hysteretic, and windows where phase locking is suppressed due to dynamical instabilities. We characterize the dynamical states around the phase-locking interference condition in the IVIV curve with voltage noise, Lyapunov exponents and Poincar\'e sections. We find that zero temperature phase-locking behavior in large fully frustrated arrays is well described by an effective four plaquette model.Comment: 12 pages, 11 figure

    A new model for root growth in soil with macropores

    Get PDF
    Abstract: Background and aimsThe use of standard dynamic root architecture models to simulate root growth in soil containing macropores failed to reproduce experimentally observed root growth patterns. We thus developed a new, more mechanistic model approach for the simulation of root growth in structured soil. Methods: In our alternative modelling approach, we distinguish between, firstly, the driving force for root growth, which is determined by the orientation of the previous root segment and the influence of gravitropism and, secondly, soil mechanical resistance to root growth. The latter is expressed by its inverse, soil mechanical conductance, and treated similarly to hydraulic conductivity in Darcy’s law. At the presence of macropores, soil mechanical conductance is anisotropic, which leads to a difference between the direction of the driving force and the direction of the root tip movement. Results: The model was tested using data from the literature, at pot scale, at macropore scale, and in a series of simulations where sensitivity to gravity and macropore orientation was evaluated. Conclusions: Qualitative and quantitative comparisons between simulated and experimentally observed root systems showed good agreement, suggesting that the drawn analogy between soil water flow and root growth is a useful one
    corecore