147 research outputs found

    Full regularity for a C*-algebra of the Canonical Commutation Relations. (Erratum added)

    Full text link
    The Weyl algebra,- the usual C*-algebra employed to model the canonical commutation relations (CCRs), has a well-known defect in that it has a large number of representations which are not regular and these cannot model physical fields. Here, we construct explicitly a C*-algebra which can reproduce the CCRs of a countably dimensional symplectic space (S,B) and such that its representation set is exactly the full set of regular representations of the CCRs. This construction uses Blackadar's version of infinite tensor products of nonunital C*-algebras, and it produces a "host algebra" (i.e. a generalised group algebra, explained below) for the \sigma-representation theory of the abelian group S where \sigma(.,.):=e^{iB(.,.)/2}. As an easy application, it then follows that for every regular representation of the Weyl algebra of (S,B) on a separable Hilbert space, there is a direct integral decomposition of it into irreducible regular representations (a known result). An Erratum for this paper is added at the end.Comment: An erratum was added to the original pape

    Localisation and colocalisation of KK-theory at sets of primes

    Full text link
    Given a set of prime numbers S, we localise equivariant bivariant Kasparov theory at S and compare this localisation with Kasparov theory by an exact sequence. More precisely, we define the localisation at S to be KK^G(A,B) tensored with the ring of S-integers Z[S^-1]. We study the properties of the resulting variants of Kasparov theory.Comment: 16 page

    A Simple Separable Exact C*-Algebra not Anti-isomorphic to Itself

    Full text link
    We give an example of an exact, stably finite, simple. separable C*-algebra D which is not isomorphic to its opposite algebra. Moreover, D has the following additional properties. It is stably finite, approximately divisible, has real rank zero and stable rank one, has a unique tracial state, and the order on projections over D is determined by traces. It also absorbs the Jiang-Su algebra Z, and in fact absorbs the 3^{\infty} UHF algebra. We can also explicitly compute the K-theory of D, namely K_0 (D) = Z[1/3] with the standard order, and K_1 (D) = 0, as well as the Cuntz semigroup of D.Comment: 16 pages; AMSLaTeX. The material on other possible K-groups for such an algebra has been moved to a separate paper (1309.4142 [math.OA]

    Property (RD) for Hecke pairs

    Full text link
    As the first step towards developing noncommutative geometry over Hecke C*-algebras, we study property (RD) (Rapid Decay) for Hecke pairs. When the subgroup H in a Hecke pair (G,H) is finite, we show that the Hecke pair (G,H) has (RD) if and only if G has (RD). This provides us with a family of examples of Hecke pairs with property (RD). We also adapt Paul Jolissant's works in 1989 to the setting of Hecke C*-algebras and show that when a Hecke pair (G,H) has property (RD), the algebra of rapidly decreasing functions on the set of double cosets is closed under holomorphic functional calculus of the associated (reduced) Hecke C*-algebra. Hence they have the same K_0-groups.Comment: A short note added explaining other methods to prove that the subalgebra of rapidly decreasing functions is smooth. This is the final version as published. The published version is available at: springer.co

    On globally non-trivial almost-commutative manifolds

    Get PDF
    Within the framework of Connes' noncommutative geometry, we define and study globally non-trivial (or topologically non-trivial) almost-commutative manifolds. In particular, we focus on those almost-commutative manifolds that lead to a description of a (classical) gauge theory on the underlying base manifold. Such an almost-commutative manifold is described in terms of a 'principal module', which we build from a principal fibre bundle and a finite spectral triple. We also define the purely algebraic notion of 'gauge modules', and show that this yields a proper subclass of the principal modules. We describe how a principal module leads to the description of a gauge theory, and we provide two basic yet illustrative examples.Comment: 34 pages, minor revision

    Scattering theory for lattice operators in dimension d3d\geq 3

    Full text link
    This paper analyzes the scattering theory for periodic tight-binding Hamiltonians perturbed by a finite range impurity. The classical energy gradient flow is used to construct a conjugate (or dilation) operator to the unperturbed Hamiltonian. For dimension d3d\geq 3 the wave operator is given by an explicit formula in terms of this dilation operator, the free resolvent and the perturbation. From this formula the scattering and time delay operators can be read off. Using the index theorem approach, a Levinson theorem is proved which also holds in presence of embedded eigenvalues and threshold singularities.Comment: Minor errors and misprints corrected; new result on absense of embedded eigenvalues for potential scattering; to appear in RM

    Relative commutants of strongly self-absorbing C*-algebras

    Get PDF
    The relative commutant AAUA'\cap A^{\mathcal{U}} of a strongly self-absorbing algebra AA is indistinguishable from its ultrapower AUA^{\mathcal{U}}. This applies both to the case when AA is the hyperfinite II1_1 factor and to the case when it is a strongly self-absorbing C*-algebra. In the latter case we prove analogous results for (A)/c0(A)\ell_\infty(A)/c_0(A) and reduced powers corresponding to other filters on N\bf N. Examples of algebras with approximately inner flip and approximately inner half-flip are provided, showing the optimality of our results. We also prove that strongly self-absorbing algebras are smoothly classifiable, unlike the algebras with approximately inner half-flip.Comment: Some minor correction

    Loop groups and noncommutative geometry

    Get PDF
    We describe the representation theory of loop groups in terms of K-theory and noncommutative geometry. This is done by constructing suitable spectral triples associated with the level l projective unitary positive-energy representations of any given loop group LGLG. The construction is based on certain supersymmetric conformal field theory models associated with LG in the setting of conformal nets. We then generalize the construction to many other rational chiral conformal field theory models including coset models and the moonshine conformal net.Comment: Revised versio

    Tangling clustering of inertial particles in stably stratified turbulence

    Full text link
    We have predicted theoretically and detected in laboratory experiments a new type of particle clustering (tangling clustering of inertial particles) in a stably stratified turbulence with imposed mean vertical temperature gradient. In this stratified turbulence a spatial distribution of the mean particle number density is nonuniform due to the phenomenon of turbulent thermal diffusion, that results in formation of a gradient of the mean particle number density, \nabla N, and generation of fluctuations of the particle number density by tangling of the gradient, \nabla N, by velocity fluctuations. The mean temperature gradient, \nabla T, produces the temperature fluctuations by tangling of the gradient, \nabla T, by velocity fluctuations. These fluctuations increase the rate of formation of the particle clusters in small scales. In the laboratory stratified turbulence this tangling clustering is much more effective than a pure inertial clustering that has been observed in isothermal turbulence. In particular, in our experiments in oscillating grid isothermal turbulence in air without imposed mean temperature gradient, the inertial clustering is very weak for solid particles with the diameter 10 microns and Reynolds numbers Re =250. Our theoretical predictions are in a good agreement with the obtained experimental results.Comment: 16 pages, 4 figures, REVTEX4, revised versio

    The ordered K-theory of a full extension

    Get PDF
    Let A be a C*-algebra with real rank zero which has the stable weak cancellation property. Let I be an ideal of A such that I is stable and satisfies the corona factorization property. We prove that 0->I->A->A/I->0 is a full extension if and only if the extension is stenotic and K-lexicographic. As an immediate application, we extend the classification result for graph C*-algebras obtained by Tomforde and the first named author to the general non-unital case. In combination with recent results by Katsura, Tomforde, West and the first author, our result may also be used to give a purely K-theoretical description of when an essential extension of two simple and stable graph C*-algebras is again a graph C*-algebra.Comment: Version IV: No changes to the text. We only report that Theorem 4.9 is not correct as stated. See arXiv:1505.05951 for more details. Since Theorem 4.9 is an application to the main results of the paper, the main results of this paper are not affected by the error. Version III comments: Some typos and errors corrected. Some references adde
    corecore