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Abstract

Within the framework of Connes’ noncommutative geometry, we define and study globally non-trivial
(or topologically non-trivial) almost-commutative manifolds. In particular, we focus on those almost-
commutative manifolds that lead to a description of a (classical) gauge theory on the underlying base
manifold. Such an almost-commutative manifold is described in terms of a ‘principal module’, which
we build from a principal fibre bundle and a finite spectral triple. We also define the purely algebraic
notion of ‘gauge modules’, and show that this yields a proper subclass of the principal modules. We
describe how a principal module leads to the description of a gauge theory, and we provide two basic yet
illustrative examples.
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1 Introduction

The framework of Connes’ noncommutative geometry [Con94] provides a generalisation of ordinary Rieman-
nian spin manifolds to noncommutative manifolds. Within this framework, the special case of a (globally
trivial) almost-commutative manifold has been shown to describe a (classical) gauge theory over a Rieman-
nian spin manifold, which ultimately led to a description of the full Standard Model of high energy physics,
including the Higgs mechanism and neutrino mixing [CCM07].

The gauge theories mentioned above are, by construction, topologically trivial (in the sense that the
corresponding principal bundles are globally trivial bundles). The aim of this paper is to adapt the framework
in order to allow for globally non-trivial gauge theories as well. Such a generalisation has previously been
obtained for the special case of Yang-Mills theory [BS11].

Let us briefly recall how a description of a gauge theory is obtained from an almost-commutative manifold
in the globally trivial case (for a more detailed introduction we refer to e.g. [DS12]). We start with a smooth
compact 4-dimensional Riemannian spin manifold M , which can be described in terms of a (real, even)
spectral triple (C∞(M), L2(S), /D, γ5, JM ), where /D is the Dirac operator on the spinor bundle S → M , γ5

is the grading operator and JM is charge conjugation [Con13]. If we take a real even finite spectral triple
(AF ,HF , DF , γF , JF ), one can consider the product triple

M × F :=
(
C∞(M,AF ), L2(S)⊗HF , /D ⊗ I + γ5 ⊗DF , γ5 ⊗ γF , JM ⊗ JF

)
. (1)

For a real spectral triple T = (A,H, D, J), we define its gauge group as

G(T ) :=
{
uJuJ∗ | u ∈ U(A)

}
' U(A)/U(AJ), (2)

where AJ is the central subalgebra of A consisting of all elements a ∈ A for which aJ = Ja∗. Now suppose
we have a real even finite spectral triple F = (AF ,HF , DF , γF , JF ) with gauge group GF = G(F ). Then the
product triple M × F defined above has gauge group G(M × F ) ' C∞(M,GF ) (at least when M is simply
connected), which coincides with the ‘classical’ notion of the gauge group of the (globally trivial) principal
GF -bundle P = M × GF . (The isomorphism G(M × F ) ' C∞(M,GF ), stated in [BS11, Proposition 4.3]
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and [DS12, §2.4.3], is only valid under some additional conditions, and simply-connectedness of M is always
sufficient. We shall prove this in general for the globally non-trivial case in Theorem 4.12.)

One can show that the inner fluctuations of the operator /D ⊗ I + γ5 ⊗ DF yield gauge fields (i.e. con-
nection forms on the principal bundle P) as well as scalar fields (which are interpreted as Higgs fields in the
noncommutative Standard Model). Finally, the spectral action principle [CC97] yields a (gauge-invariant)
Lagrangian from the data of the triple M × F .

This paper is organised as follows. We start in Section 2 by gathering some preliminary material.
Sections 2.1 to 2.3 contain a brief introduction into (principal) fibre bundles and modules. In Section 2.4 we
describe a sufficient condition for when sections of a quotient group bundle can be lifted. Finally, we recall
the basics of spectral triples and unbounded Kasparov modules in Section 2.5. The reader who is familiar
with these topics may wish to skip these preliminaries on a first reading.

In Section 3 we describe the generalisation of the product triples M × F to (in general globally non-
trivial) almost-commutative manifolds. We show that these almost-commutative manifolds are naturally
given by the internal Kasparov product of an internal space I (replacing the finite spectral triple F ) with
the underlying manifold M .

While every globally trivial almost-commutative manifold describes a gauge theory, this no longer holds
for arbitrary globally non-trivial almost-commutative manifolds. In Section 4 we therefore focus our attention
on those internal spaces that will allow us to obtain a gauge theory. After briefly recalling the classification
of finite spectral triples, we define the notion of a principal module, which is an internal space built from a
finite spectral triple F and a principal fibre bundle P over M . We show that the algebraic definition of the
gauge group of a principal module (defined similarly to Eq. (2)) coincides precisely with the usual definition
of the gauge group of P (i.e. the vertical automorphisms of P), provided that the underlying manifold M is
simply connected.

One of the main ideas in the development of noncommutative geometry has been the translation of
geometric data into (operator-)algebraic data. Whereas principal modules are constructed from geometric
objects (namely principal fibre bundles), we devote Section 5 to the purely algebraic notion of what we call
a gauge module. We prove that these gauge modules form a proper subclass of the principal modules, which
are characterised by a lift of P to a principal U(AF )-bundle (where AF is the algebra of the finite spectral
triple F ).

By equipping a principal module with a connection and a ‘mass matrix’, we construct the corresponding
principal almost-commutative manifold in Section 6. The remainder of this section is used to establish
the main goal of this paper; namely, we describe in detail how this principal almost-commutative manifold
describes a gauge theory on M .

In Section 7 we provide two basic but illustrative examples of such gauge theories, namely Yang-Mills
theory and electrodynamics. The Yang-Mills example in particular shows that not every principal module is
a gauge module. However, we also show that the Yang-Mills example is a gauge module when the underlying
manifold is simply-connected and 4-dimensional. Hence on such manifolds we have no example of a principal
module which is not a gauge module.

We finish with an Outlook on possible future work.

Notation

All C∗-algebras and Hilbert modules will be denoted with capital letters (e.g. A,B,E . . .), their smooth
sub-algebras or pre-C∗-algebras (i.e. densely defined ∗-sub-algebras that are closed under the holomorphic
functional calculus) and Hilbert pre-modules will be denoted with curly letters (e.g. A,B, E , . . .). The main
exception to these conventions is the notation H, which always denotes a complex Hilbert space. By M
we denote a smooth connected compact Riemannian spin manifold. Bundles over M will be denoted with
‘typewriter font’, where we use B for algebra bundles, E for vector bundles, P for principal fibre bundles, G
for group bundles, and S for the spinor bundle. Continuous (resp. smooth) sections of a bundle E→M will
be denoted by Γ(E) (resp. Γ∞(E)).
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2 Preliminaries

2.1 Fibre bundles

The definitions concerning fibre bundles in this paper may differ from the definitions in some other literature,
including [BS11], so that we find it necessary to include a list of the definitions we use. All manifolds are
assumed to be smooth and all maps between them are also assumed to be smooth.

Let E→M be a smooth fibre bundle (see e.g. [KN63]). A local trivialisation of E is denoted by (U, hU),
where U is an open neighbourhood in M and hU : π−1(U)→ U×F is a diffeomorphism such that pr1◦hU = π.
For two local trivialisations (U, hU) and (V, hV ) for which U ∩V 6= ∅, we denote the corresponding transition
function by gV U := hV ◦ h−1

U ∈ C∞(U ∩ V,Diff(F )).

Definition 2.1. Let C be some subcategory of the category of smooth manifolds, with objects ObC and mor-
phisms MorC(A,B) for all objects A,B ∈ ObC . Let M be a smooth manifold. A fibre bundle π : E→M with
fibre F is called a C-bundle if F ∈ ObC and if on each local trivialisation (U, hU) the map hU |π−1(x) : π−1(x)→
x× F is an isomorphism in MorC(π

−1(x), F ).
Let π1 : E1 → M and π2 : E2 → M be fibre bundles. A bundle morphism φ : E1 → E2 is a smooth map

such that π2◦φ = π1. If E1 and E2 are C-bundles, then φ is called a C-bundle morphism if φ|π−1
1 (x) : π−1

1 (x)→
π−1

2 (x) is an element of MorC(π
−1
1 (x), π−1

2 (x)) for each x ∈M .
Let π : E→M be a C-bundle with fibre F . A fibre subbundle π′ : E′ →M with fibre F ′ is a C-subbundle

if F ′ ∈ ObC and there exist local trivialisations {(U, hU)} for E such that hU(E′|U) ' U × ι(F ′), where ι is an
injective morphism in MorC(F

′, F ).
If C is the category of finite-dimensional vector spaces, finite-dimensional (∗-)algebras, or Lie groups,

then C-bundles are referred to as vector bundles, (∗-)algebra bundles, or group bundles (respectively).

Remark 2.2. Note that according to Definition 2.1 a (∗-)algebra bundle is always locally trivial, in contrast
with the definition of (∗-)algebra bundle in [BS11] (where the bundle is only assumed to be locally trivial
as a vector bundle). The weaker notion given in [BS11] will here be referred to as weak (∗-)algebra bundle,
following terminology of [Ćać12].

The space of smooth sections Γ∞(E) of a vector bundle E is a finitely generated projective C∞(M)-
module, with pointwise addition and multiplication by C∞(M). If φ : E1 → E2 is a vector bundle morphism,
then

φ∗ : Γ∞(E1)→ Γ∞(E2), (φ∗s)(x) = φ(s(x))

is a C∞(M)-module morphism. By the Serre-Swan theorem [Swa62], the assignment E 7→ Γ∞(E) on objects
and the assigment φ 7→ φ∗ on morphisms determines an equivalence between the category of smooth vector
bundles over M and the category of finitely generated projective modules over C∞(M).

Similarly, for a group bundle G, the sections Γ∞(G) form a group with fibre-wise multiplication and
inverse.

Example 2.3 (Unitary group bundle). If B is a unital ∗-algebra bundle, we define the unitary group bundle
of B as

U(B) := {b ∈ B | bb∗ = b∗b = 1}.

Then U(B) is a fibre subbundle of B, which forms a group bundle with group multiplication of U(B)x = U(Bx)
inherited from the algebra multiplication of Bx, and group inverse given by the involution ∗. The sections of
the unitary group bundle are equal to the unitary sections of the algebra bundle: Γ∞(U(B)) = U(Γ∞(B)).

Example 2.4 (Endomorphism bundle). Let πE : E → M be a (hermitian) vector bundle with fibre V and
local trivialisations (U, hEU). Then the bundle of endomorphisms End(E) is a unital (∗-)algebra bundle over

M with fibre End(V ), and its local trivialisations (U, h
End(E)
U ) are induced from (U, hEU).
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Theorem 2.5 ([BS11, Theorem 3.8]). Let M be a compact manifold. There is an equivalence between the
category of (unital) weak (∗-)algebra bundles over M and the category of (unital) (involutive) C∞(M)-module
algebras that are finitely generated projective as C∞(M)-modules.

We again emphasise the difference between algebra bundles and weak algebra bundles as mentioned in
Remark 2.2. We are grateful to Eli Hawkins who pointed out to us that a weak algebra bundle is locally
trivial if and only if there exists a connection ∇ satisying the Leibniz rule

∇(ab) = (∇a)b+ a(∇b).

In the continuous case, however, it remains unclear what algebraic conditions one needs to impose on a
C(M)-module algebra B = Γ(B), where B is a (continuous) weak algebra bundle, to ensure that the weak
algebra bundle B is in fact locally trivial.

2.2 Principal fibre bundles and (classical) gauge theories

In this section, we briefly recall the definition of a principal fibre bundle, and some basic results. We refer
to [KN63, Chapter I] and [Ble81] for more details.

Definition 2.6. A principal fibre bundle P over M with structure group G (or a principal G-bundle for

short) consists of a fibre bundle P
π−→ M equipped with a smooth right action of G that acts freely and

transitively on the fibres, such that for a local trivialisation (U, hU) of P, the map hU intertwines the right
action of G on P|U with the natural right action of G on U ×G.

One can construct a principal G-bundle P as soon as one knows its (G-valued) transition functions.

Theorem 2.7 (Reconstruction theorem, [KN63, Chapter I, Proposition 5.2.]). Let M be a compact manifold,
G a Lie-group, and {Ui}i∈I an open covering of M . Suppose that for each i, j ∈ I with Ui ∩Uj 6= ∅, there is
a smooth map gij : Ui ∩Uj → G such that gij(x)gjk(x)gki(x) = e for all x ∈ Ui ∩Uj ∩Uk. Then there exists
a unique principal G-bundle P over M with the {Ui} as trivialising neighbourhoods and the gij as transition
functions.

Definition 2.8. Let {(Ui, hi)} be a set of local trivialisations of P such that ∪iUi = M . A connection ω on
P is a set of local g-valued 1-forms ωi ∈ Ω1(Ui, g) such that

ωj = g−1
ij dgij + g−1

ij ωigij (3)

for i, j such that Ui ∩ Uj 6= ∅.
Definition 2.9. Given an action ρ of G on a smooth manifold F , we define the associated bundle P ×ρ F
(or P×G F ) as the quotient of the product manifold P× F with respect to the equivalence relation given by
(pg, f) ∼ (p, ρ(g)f). If F ∈ ObC and ρ(g) ∈ MorC(F, F ) for all g ∈ G, then P×ρ F is a C-bundle.

Example 2.10. The adjoint bundle Ad P is defined as the associated bundle P ×Ad G with respect to the
adjoint action Ad(g)h := ghg−1, (g, h ∈ G). The adjoint bundle is a group bundle with fibres isomorphic to
G, and its sections Γ∞(Ad P) then form a group with fibre-wise multiplication.

Definition 2.11. A gauge transformation of a principle G-bundle P is a principal bundle automorphism of P
over id : M →M , that is, a smooth invertible map φ : P→ P such that π(φ(p)) = π(p) and φ(pg) = φ(p)g for
all p ∈ P and g ∈ G. The set of all such φ is called the gauge group G(P) of P, where the group multiplication
is given by composition.

Theorem 2.12 (see e.g. [Ble81, Ch. 3]). The gauge group G(P) is isomorphic to the group Γ∞(Ad P).

Definition 2.13. Let M be a manifold and G a Lie group. A classical G-gauge theory over M is a principal
fibre bundle P with structure group G. Connections ω on P are also called gauge potentials.

More precisely, the bundle P forms the setting for a classical gauge theory. The particle fields can
be described as sections of associated bundles of P. The description of the gauge theory is completed by
specifying an action functional, which depends on the connection and on the particle fields, and which is
invariant under the action of the gauge group.
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2.2.1 Structure group

Let E be a vector bundle with fibre V . A set of transition functions {(Ui, gij)} on E is called a G-atlas if
each transition function takes values in G ⊂ GL(V ). If E admits a G-atlas, then we say that E has structure
group G. Given two G-atlases {(Ui, gij)} and {(Ui, g′ij)} (where, after taking a common refinement, we may
assume without loss of generality that both atlases are given on the same open covering {Ui}), we say that
they are equivalent if there are functions gi ∈ C∞(Ui, G) such that

g′ij(x) = gi(x)−1gij(x)gj(x), for all x ∈ Ui ∩ Uj .

Given a G-atlas {(Ui, gij)} on E, Theorem 2.7 constructs a unique principal G-bundle P, which only
depends (up to isomorphism) on the equivalence class of the G-atlas. Conversely, a set of transition functions
on P uniquely determines an equivalence class of G-atlases on the associated bundle P×G V .

Example 2.14. Let E→M be a complex vector bundle with fibre CN over a compact manifold M . Then
all U(N)-atlases on E are equivalent. Hence there is a unique (up to isomorphism) principal U(N)-bundle P

such that E ' P×U(N) CN .

Definition 2.15 (Lifting of structure group). Let φ : H → G be a surjective group homomorphism. A
principal G-bundle P → M is said to lift to a principal H-bundle Q → M along φ if there is a bundle
morphism τ : Q→ P such that τ(qh) = τ(q)φ(h) for all q ∈ Q, h ∈ H. Equivalently, Q is a lift of P if

Q×φ G ' P

as principal G-bundles.
If τ : Q → P is such a lift and ρ : G → GL(V ) is a finite-dimensional representation, then Q ×ρ◦φ V is

isomorphic to P×ρ V . We stress that a lift need not always exist, and if it exists, it need not be unique.

2.3 Conjugate modules and vector bundles

In the construction of gauge modules in Section 5 we will make explicit use of the notion of a conjugate
module. For completeness, we recall the definition of conjugate modules and vector bundles here. Since
most of the modules are endowed with a hermitian structure, we recall the definition of a hermitian module
first.

Definition 2.16. Let A be a ∗-algebra and let E be a right A-module. A (right) hermitian structure
(·, ·)A : E × E → A on E is a sesqui-linear map (anti-linear in the first variable) satisfying

(e1, e2a)A = (e1, e2)Aa; (e2, e1)A = (e1, e2)∗A; (e, e)A ≥ 0; (e, e)A = 0 ⇐⇒ e = 0,

for all a ∈ A, e1, e2, e ∈ E . We also write (·, ·) instead of (·, ·)A when no confusion can arise. A module
endowed with a hermitian structure is also called a hermitian module. A left hermitian structure A(·, ·) is
defined similarly.

A hermitian structure is called non-degenerate if the map

E → E∗ := HomA(E ,A), e0 7→ (e 7→ (e0, e))

is an anti-linear isomorphism. Note that the assumption that the hermitian structure is positive-definite
already implies that the map E → E∗ is injective. Non-degeneracy therefore requires surjectivity of this map.

A finitely generated projective right A-module E is of the form pAN , for some N ∈ N and some projection
p ∈ MN (A). The restriction of the standard hermitian structure on AN then gives a non-degenerate
hermitian structure on E . If A = C∞(M) (so that E = Γ∞(E) for some vector bundle E → M by the
Serre-Swan theorem [Swa62]), then the hermitian structure is non-degenerate if and only if it induces an
inner product on each fibre of E.
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Definition 2.17. Let E be an A − B-bimodule with a (right) B-valued hermitian structure (·, ·)B. Its
conjugate module E is equal to E itself as an additive group. It can naturally be endowed with a B − A-
bimodule structure and a (left) B-valued hermitian structure B(·, ·) by setting

be := eb∗, ea := a∗e, B(e1, e2) := (e1, e2)B,

for all a ∈ A, b ∈ B, e, e1, e2 ∈ E .

If E = Γ∞(E) is the C∞(M)-module of sections of some (hermitian) vector bundle E, then the conjugate
module E is equal to the C∞(M)-module of sections of the conjugate vector bundle E which is defined as:

Definition 2.18. Let E → M be a complex vector bundle. Take E to be equal to E as fibres bundles over
M , and write e for the element in E that corresponds to e ∈ E under this identification. The bundle E is
turned into a vector bundle over M by defining the vector space structure in Ex by

(e1, e2) 7→ e1 + e2, λ · e = λe,

for all λ ∈ C, e, e1, e2 ∈ Ex. The vector bundle E→M is called the conjugate vector bundle of E.

The identification E 3 e 7→ e ∈ E in the above definition is an anti-linear isomorphism of vector bundles.
A local trivialisation (U, h) of E induces a local trivialisation of E given by the map

h : π−1
E

(U) 3 e 7→ he ∈ U × V ,

where (x, v) := (x, v) ∈ U × V . If gij is a transition function between two local trivialisations (Ui, hi) and
(Uj , hj) of E, then the transition function gij between the corresponding local trivialisations (Ui, hi) and
(Uj , hj) is equal to

hi ◦ hj
−1

(x, v) = hi

(
h−1
j (x, v)

)
= hih

−1
j (x, v) = (x, gij(x)v) = (x, v · gij(x)∗). (4)

From here on, we consider A := C∞(M). Suppose that E is a hermitian right A-module with hermitian
structure (·, ·)A.

Definition 2.19. A connection ∇ on E is a map ∇ : E → E ⊗A Ω1(M) satisfying the rule

∇(ea) = ∇(e)a+ e⊗ da,

for all e ∈ E and a ∈ A. The connection is called hermitian if

(∇e1, e2)Ω1(M) + (e1,∇e2)Ω1(M) = d(e1, e2)A,

for all e1, e2 ∈ E , where the map (·, ·)Ω1(M) : E × (E ⊗A Ω1(M))→ Ω1(M) is defined as (e1, e2 ⊗ α)Ω1(M) :=

(e1, e2)Aα. We then define (·, ·)Ω1(M) : (E⊗AΩ1(M))×E → Ω1(M) as (e1⊗α, e2)Ω1(M) :=
(
(e2, e1⊗α)Ω1(M)

)∗
.

The conjugate connection ∇ : E → Ω1(M)⊗A E is given by

∇e = ∇e, (e ∈ E),

where e⊗ ω = ω∗⊗ e for all e⊗ω ∈ E ⊗A Ω1(M). Here ∗ : Ω1(M)→ Ω1(M) is defined as (fdg)∗ = f∗(dg∗).
It then follows that ∇ is also hermitian for the map Ω1(M)(·, ·) : (Ω1(M) ⊗A E) × E → Ω1(M) defined as

Ω1(M)(α⊗ e1, e2) := (e1 ⊗ α∗, e2)Ω1(M) = α(e1, e2)A.
For a commutative algebra A = C∞(M) the notion of left and right modules are equivalent. If E is

a left A-module with (left) A-valued hermitian structure A(·, ·), then (e1, e2)A := A(e2, e1) defines a right
A-valued hermitian structure on E when it is seen as a right A-module. If A = C∞(M), we will freely use
this identification.
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2.4 Covering maps

We observe that, for a surjective group bundle morphism φ : H → G, the induced map φ∗ : Γ∞(H) → Γ∞(G)
need not always be surjective, as the following example shows.

Example 2.20. Take M = SO(3) and consider the globally trivial group bundles H = M × U(2) and
G = M × PSU(2), with the obvious group bundle morphism φ : H → G given by the quotient U(2) →
PSU(2). Since H and G are globally trivial, we can make the identifications Γ∞(H) ' C∞(SO(3), U(2))
and Γ∞(G) ' C∞(SO(3), PSU(2)). Consider the map f : SO(3) → PSU(2) given by the identification of

PSU(2) with SO(3), i.e. f = id on SO(3). If there exists a lift f̃ : SO(3)→ U(2) such that f = φ ◦ f̃ , then

f̃ is nothing but a global section of the U(1)-principal bundle π : U(2)→ SO(3). However, as this bundle is
not globally trivial (the fundamental group of U(2) is Z, whereas the fundamental group of SO(3)×U(1) is
Z2 ×Z), such a section does not exist. Hence the map f , seen as a section in Γ∞(G), is not contained in the
image of φ∗.

In this subsection we aim to find sufficient conditions for the surjectivity of φ∗. In other words, we would
like to have sufficient conditions to ensure that for any section s : M → G there exists a lift s̃ : M → H such
that φ∗(s̃) = s. Though the existence of lifts for covering maps has been well-studied, we will typically be
dealing with more general fibrations φ : H→ G, for which the problem of existence of lifts is more complicated.
We avoid this problem by reducing it to the case of covering maps, as follows.

Lemma 2.21. Let p : E → B be a fibration, and consider some map f : M → B. Suppose there exists a
submanifold C ⊂ E such that p|C : C → B is a covering space, satisfying f∗(π1(M,m)) ⊂ p∗(π1(C, c)), where
m ∈ M and c ∈ C are such that f(m) = p(c). Then there exists a lift f̃ : M → E satisfying p ◦ f̃ = f and
f̃(m) = c.

Proof. Consider the diagram

C �
� //

p|C
��

E

p

��
M

f̃ ′
>>

f // B B

The assumption f∗(π1(M,m)) ⊂ p∗(π1(C, c)) implies (see e.g. [Hat02, Proposition 1.33]) that there exists
a lift f̃ ′ : M → C satisfying f̃ ′(m) = c, and then we can simply define f̃ : M → E as the composition

M
f̃ ′−→ C ↪→ E.

We now translate the above lemma into the setting of group bundles, where we will need it later.

Corollary 2.22. Let M be a simply connected manifold, and let G, H be group bundles over M . If G is
covered by a subbundle U of H via a group bundle morphism φ : H → G, then the map φ∗ : Γ∞(H) → Γ∞(G),
given by s 7→ φ ◦ s, is surjective.

Proof. By assumption, φ|U : U → G is a covering space. Since π1(M,m) is trivial (by definition of simply-
connectedness) it follows from Lemma 2.21 that each section s : M → G can be lifted to a section s̃ : M →
U ⊂ H such that φ∗(s̃) = s.

2.5 Spectral triples and Kasparov modules

Spectral triples were introduced in [Con94] as a noncommutative analogue of a spin manifold.

Definition 2.23. A spectral triple (A,H, D) is given by an involutive unital algebra A represented (faith-
fully) as bounded operators on a Hilbert space H and a self-adjoint (generally unbounded) operator D with
compact resolvent (or equivalently, (1 +D2)−1/2 is a compact operator) such that a ·DomD ⊂ DomD and
the commutator [D, a] is bounded for each a ∈ A.
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A spectral triple is called even if there exists a Z2-grading γ on H that commutes with any a ∈ A and
anti-commutes with D.

A spectral triple is called real if there exists an anti-unitary isomorphism J : H → H satisfying

J2 = ε, JD = ε′DJ, Jγ = ε′′γJ (if γ exists),

[a, JbJ∗] = 0, [[D, a], JbJ∗] = 0, ∀a, b ∈ A.

The signs ε, ε′ and ε′′ determine the KO-dimension n modulo 8 of the real spectral triple, according to the
following table:

n 0 1 2 3 4 5 6 7
ε 1 1 −1 −1 −1 −1 1 1
ε′ 1 −1 1 1 1 −1 1 1
ε′′ 1 −1 1 −1

We will refer to the conditions [a, JbJ∗] = 0 and [[D, a], JbJ∗] = 0 as the zeroth- and first-order condition,
respectively.

Given an algebra A, we define the opposite algebra as the vector space Aop := {aop | a ∈ A} with the
opposite product aopbop = (ba)op. For a real spectral triple, we therefore have a linear representation of Aop

on H given by aop 7→ Ja∗J∗.
The notion of spectral triple can be seen as an unbounded version of a Fredholm module. The generalisa-

tion of Fredholm modules from Hilbert spaces to Hilbert modules was performed by Kasparov [Kas80], where
for any two graded C∗-algebras A and B the set KK(A,B) was defined as the set of equivalence classes of
certain Kasparov A− B-modules. In addition, there exists a Kasparov product KK(A,B)×KK(B,C)→
KK(A,C). More details can be found in e.g. [Bla98]. Kasparov modules were subsequently generalised to
the unbounded picture by Baaj and Julg [BJ83]. In this paper we will only focus on the unbounded picture,
which we briefly recall below.

Definition 2.24 ([BJ83]). Given Z2-graded C∗-algebras A and B, an unbounded Kasparov A − B-module
(φ(A)EB , D) is given by

• a Z2-graded, countably generated, right Hilbert B-module EB ;

• a Z2-graded ∗-homomorphism φ : A→ EndB(E);

• a self-adjoint, regular, odd operator D : DomD ⊂ E → E such that, for all a in a dense sub-algebra
A of A, φ(a) · DomD ⊂ DomD and [D,φ(a)]± is (or extends to) a bounded endomorphism, and

φ(a)(1 +D2)−
1
2 is a compact endomorphism (i.e. it lies in End0

B(E)).

The set of all unbounded Kasparov A−B-modules is denoted by Ψ(A,B). We will often simply write AEB
instead of φ(A)EB .

A right Hilbert C-module is just a Hilbert space. A spectral triple (A,H, D) may then be seen as an
unbounded Kasparov A− C-module (AHC, D), where the C∗-closure A of A is trivially graded.

There is a natural map from the unbounded picture to the bounded one. This map is defined by
replacing the operator D in (φ(A)EB , D) by b(D) = D(1 + D2)−

1
2 , where b : R → R denotes the function

b(x) = x(1 + x2)−
1
2 .

Theorem 2.25 ([Bla98, Theorems 17.10.7 and 17.11.4]). If (φ(A)EB , D) ∈ Ψ(A,B), then (φ(A)EB , b(D)) ∈
KK(A,B). Moreover, if A is separable and B is σ-unital, then this map Ψ(A,B)→ KK(A,B) is surjective.

The Kasparov product has an unbounded analogue. To be precise, we say that an unbounded Kas-
parov A − C-module (φ(A)EC , D) represents the Kasparov product of two unbounded Kasparov modules
(φ1(A)E1B , D1) and (φ2(B)E2C , D2) if [(E, b(D))] ∈ KK(A,C) is the Kasparov product of [(E1, b(D1))] ∈

9



KK(A,B) and [(E2, b(D2))] ∈ KK(B,C), where the square brackets indicate that we take the equivalence
class of the Kasparov-module.

We will show in Section 3 that the construction of an almost-commutative manifold as the product of
an internal space I with the underlying manifold M corresponds to an unbounded Kasparov product on the
level of KK-classes. Although this follows from the (more general) framework of Mesland [Mes14], we will
prove it directly using the following result.

Theorem 2.26 (Kucerovsky, [Kuc97]). Let (φ1(A)E
1
B , D1) and (φ2(B)E

2
C , D2) be unbounded Kasparov mod-

ules. Write E := E1⊗̂BE2, where ⊗̂ denotes the graded tensor product. Suppose that (φ1(A)⊗idEC , D) is an
unbounded Kasparov module such that:

i) for all e1 in a dense subspace of φ1(A)E1, the commutators[(
D 0
0 D2

)
,

(
0 Te1
T ∗e1 0

)]
are bounded on Dom(D ⊕D2) ⊂ E ⊕ E2, where Te1 : E2 → E is given by Te1(e2) = e1 ⊗ e2;

ii) Dom(D) ⊂ Dom(D1⊗̂1);

iii) ((D1⊗̂1)e|De) + (De|(D1⊗̂1)e) ≥ K(e|e) for some K ∈ R, for all e ∈ Dom(D).

Then (φ1(A)⊗idEC , D) represents the Kasparov product of (φ1(A)E
1
B , D1) and (φ2(B)E

2
C , D2).

3 Almost-commutative manifolds

Almost-commutative manifolds M × F of the form Eq. (1) were first studied in [CL91] and [DKM90b,
DKM90a, DKM89a, DKM89b]. They were later used in [Con96, CCM07] to geometrically describe Yang-
Mills theories and the Standard Model of elementary particles. The name almost-commutative manifolds
was coined in [ISS04], their classification started in [Kra98, PS98].

Let M be a smooth compact even-dimensional Riemannian spin manifold. We assume (throughout this
section) that M has dimension 4. The manifold M can be completely characterised [Con13] by the real even
spectral triple

(C∞(M), L2(S), /D, γ5, JM ),

which is often referred to as the canonical spectral triple for M . Here S is a spinor bundle over M , /D =
−ic ◦ ∇S is the corresponding Dirac operator (where ∇S is the lift of the Levi-Civita connection on M , and
c denotes Clifford multiplication with the conventions c(v)c(w) + c(w)c(v) = 2g(v, w) and c(v)∗ = c(v) for
any v, w ∈ Γ∞(T ∗M)), γ5 is the grading of the spinor bundle, and JM is the charge conjugation operator.
Given a real even finite spectral triple (AF ,HF , DF , γF , JF ) (for which dimHF <∞), we can construct the
product triple

M × F :=
(
C∞(M,AF ), L2(S)⊗HF , /D ⊗ I + γ5 ⊗DF , γ5 ⊗ γF , JM ⊗ JF

)
.

Defining the (globally trivial) algebra bundle B = M×AF and the (globally trivial) vector bundle E = M×HF ,
we can rewrite C∞(M,AF ) ' Γ∞(B) and L2(S) ⊗ HF ' L2(S ⊗ E). The purpose of this section is to
generalise the construction of M × F to globally non-trivial bundles over M . At the same time, we will put
this generalised construction in the context of the Kasparov product between unbounded Kasparov modules.
The globally non-trivial case was first considered in [BS11] for the case of algebra bundles with fibre MN (C),
and has also been studied more generally in [Ćać12].
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3.1 The internal space

Definition 3.1. A (smooth) internal space I∞ over a compact manifold M is given by the data

I∞ := (Γ∞(B), Γ∞(E), DI) ,

where E is a hermitian vector bundle over M , B is a unital ∗-algebra subbundle of End(E), and DI is a
hermitian element of Γ∞(End(E)) ' EndC∞(M)(Γ

∞(E)).
An internal space is called even if there is a grading γI , i.e. an endomorphism γI ∈ Γ∞(End(E)) such

that

γ∗I = γI , γ2
I = 1, γIDI = −DIγI , γIa = aγI ∀a ∈ Γ∞(B).

An even internal space is called real if there is a real structure JI , i.e. an anti-unitary endomorphism JI on
E such that

J2
I = ε, JIDI = ε′DIJI , JIγI = ε′′γIJI ,

[a, Jb∗J∗] = 0,
[
[DI , a], Jb∗J∗

]
= 0, ∀a, b ∈ Γ∞(B),

where the signs determine the KO-dimension of the internal space according to the same table as in Defini-
tion 2.23.

Remark 3.2. The endomorphism DI will be interpreted as a mass matrix describing the masses of the
elementary particles. We would like to point out a few things about this mass matrix:

1. On a local trivialisation (say, around a point x ∈M) we can view the endomorphism DI as a matrix-
valued function DI(x), but the precise form of this matrix DI(x) depends on the choice of local
trivialisation. However, since the transition functions are unitary, two different choices of local trivi-
alisations yield two unitarily equivalent mass matrices, and hence the eigenvalues of the matrix DI(x)
(i.e. the masses of the particles) are independent of the choice of local trivialisation.

2. These eigenvalues of DI(x) are (by default) allowed to vary as a function of x ∈ M . In the standard
(globally trivial) approach one can also make the (ad hoc) decision to promote the mass parameters
to functions (although this is usually not done). However, this would be unnatural from the perspec-
tive that a (globally trivial) almost-commutative manifold is the (external) Kasparov product of a
Riemannian spin manifold with a finite spectral triple. Instead, varying mass parameters are more
naturally described by replacing the finite spectral triple by an internal space (which works equally
well in the globally trivial case) and replacing the external by the internal Kasparov product. As such,
the promotion of the mass parameters to functions becomes a natural attribute of our framework.

3. One could ask whether it is always possible to choose these mass parameters to be globally constant
(as in the usual approach). We expect that this might not always be possible in the general globally
non-trivial case, but it is unclear what the precise topological obstructions would be.

We shall write A = C∞(M), B = Γ∞(B), and E = Γ∞(E). Their respective C∗-closures are denoted by
A = C(M), B = Γ(B), and E = Γ(E).

Proposition 3.3. An even internal space I∞ = (Γ∞(B),Γ∞(E), DI) yields an unbounded Kasparov B −A-
module I = (BΓ(E)A, DI).

Proof. The algebras A and B are trivially graded C∗-algebras, and E = Γ(E) is a Z2-graded, finitely gen-
erated, right Hilbert A-module, with a left action of B that commutes with the (right) action of A. The
properties of γI guarantee that all conditions with respect to the grading are satisfied. For instance, the
condition (E(m), E(n)) ⊂ A(m+n), where m,n ∈ Z2, is satisfied, since the condition γ∗I = γI implies that
〈s, t〉 = 0 as soon as one of the arguments is odd and the other is even. The operator DI is a bounded,
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self-adjoint, odd operator by definition (and hence it is automatically regular). The boundedness of DI

implies that [DI , b] is also bounded for all b ∈ B.
For a compact manifold M the compact endomorphisms of the C(M)-module Γ(E) are exactly the sections

of the endomorphism bundle End E, i.e. End0
C(M)(Γ(E)) = Γ(End(E)) (since Γ(End(E)) is already unital, the

compact endomorphisms of Γ(E) are actually all the bounded endomorphisms, see e.g. [GVF01, Proposition

3.9]). Thus, b(1 + D2
I )
− 1

2 is compact for all b ∈ B, because both (1 + D2
I )
− 1

2 and b are compact. Hence
(BΓ(E)A, DI) has all the properties mentioned in Definition 2.24.

3.2 The product space

Definition 3.4. Let I∞ := (Γ∞(B),Γ∞(E), DI , γI , JI) be a real even internal space over M , with M a
compact 4-dimensional Riemannian spin manifold. Let ∇I be a hermitian connection on E. We define a real
even almost-commutative manifold to be

I∞ ×∇M :=
(
Γ∞(B), L2(E⊗ S), /DE +DI ⊗ γ5, γI ⊗ γ5, JI ⊗ JM

)
,

where L2(E ⊗ S) ' Γ(E) ⊗C(M) L
2(S) are the L2-sections of the twisted spinor bundle E ⊗ S, and /DE is the

twisted Dirac operator
/DE := I⊗∇ /D := I⊗ /D − i(I⊗ c) ◦ (∇I ⊗ I).

Note that by definition the underlying manifold of an almost-commutative manifold is always assumed to
be of dimension 4.

We note that our definition of almost-commutative manifolds fits within the slightly more general definition
of almost-commutative spectral triples given in [Ćać12, Definition 2.3].

The order of I∞ and M in the notation I∞ ×∇ M is reversed in comparison with the order of F and
M in M × F . The reason is that the order I∞ ×∇ M is more natural from a KK-theoretical viewpoint,
whereas the notation M ×F for the globally trivial case is quite standard in the literature. In the remainder
of this section, we show in detail that an almost-commutative manifold I∞×∇M determines an unbounded
Kasparov B − C-module (i.e. a spectral triple over B) whose KK-class represents the Kasparov product
between the KK-classes of the internal space I∞ and the canonical spectral triple for M .

Proposition 3.5. Let I∞ = (Γ∞(B),Γ∞(E), DI , γI , JI) be a real even internal space over a compact Rie-
mannian spin manifold M of even KO-dimension k. Let ∇I be a hermitian connection on E that commutes
with the grading γI , satisfies ∇IµJI = JI∇Iµ, and is such that the induced connection [∇I , ·] on End E restricts
to a connection on B. Then the real even almost-commutative manifold I∞ ×∇ M is a real even spectral
triple of KO-dimension 4 + k (mod 8).

Proof. Let us write D := /DE + DI ⊗ γ5. We need to show that [D, a] is bounded for all a ∈ Γ∞(B). Since
DI is bounded itself, we need only check this for the twisted Dirac operator /DE, and we find

[ /DE, a] = −ic([∇I , a]),

where, with some abuse of notation, we write c(T ⊗ α) = T ⊗ c(α) for T ∈ Γ∞(End E) and α ∈ Ω1(M).
Hence for smooth a the commutator [ /DE, a] indeed acts as a bounded operator on L2(E ⊗ S). Furthermore
we need to show that D has compact resolvent, and (as M is compact) for this it is sufficient to show that
D2 (and hence D) is elliptic. The Lichnerowicz-Weitzenböck formula shows that the square of the twisted
Dirac operator /DE is a generalised Laplacian, and hence is elliptic. The bounded (zeroth-order) perturbation
/DE → /DE +DI ⊗ γ5 does not affect this ellipticity. Hence I∞ ×∇M is indeed a spectral triple.

Given the grading operators γI and γ5, it is straightforward to check that D(γI ⊗ γ5) = −(γI ⊗ γ5)D,
provided that [∇I , γI ] = 0.

Given the real structures JI and JM , the operator JI ⊗ JM is anti-unitary and satisfies

(JI ⊗ JM )2 = −ε, D(JI ⊗ JM ) = (JI ⊗ JM )D,
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(JI ⊗ JM )(γI ⊗ γ5) = ε′′(γI ⊗ γ5)(JI ⊗ JM ), (5)

where the signs ε, ε′′ are determined by the KO-dimension k of JI . The first equality in Eq. (5) is immediate
from J2

M = −1 and J2
I = ε. Using the relations

JM /D = /DJM , γµJM = −JMγµ, γ5JM = JMγ5, JIDI = DIJI , ∇IµJI = JI∇Iµ,

the second equality in Eq. (5) is checked by a local calculation (writing (I⊗ c) ◦ (∇I ⊗ I) = ∇Iµ ⊗ γµ):

D(JI ⊗ JM )(s⊗ ψ) = (JIs)⊗ ( /DJMψ)− i(∇IµJIs)⊗ (γµJMψ) + (DIJIs)⊗ (γ5JMψ)

= (JIs)⊗ (JM /Dψ) + i(JI∇Iµs)⊗ (JMγ
µψ) + (JIDIs)⊗ (JMγ5ψ)

= (JIs)⊗ (JM /Dψ)− (JI∇Iµs)⊗ (JM iγ
µψ) + (JIDIs)⊗ (JMγ5ψ)

= (JI ⊗ JM )D(s⊗ ψ).

The third equality in Eq. (5) immediately follows from [JM , γ5] = 0 and JIγI = ε′′γIJI . From the values
of −ε and ε′′ it is immediate that the KO-dimension of I∞ ×M should be 4 + k (mod 8) (see the table in
Definition 2.23).

The zeroth-order condition on I∞×∇M is immediate from the zeroth-order condition on I∞. Moreover,

[[ /DE, a], JbJ∗] = −i[c([∇I , a]), JbJ∗] = −ic([[∇I , a], JbJ∗]) = 0,

because, by assumption, [∇I , a] ∈ Γ∞(B) ⊗C∞(M) Ω1(M), which commutes with JbJ∗. Together with the
first-order condition on DI , this implies that D satisfies the first-order condition.

For a real spectral triple T = (A,H, D, J), the gauge group is defined in [DS12, Definition 2.5] as

G(T ) :=
{
uJuJ∗ | u ∈ U(A)

}
' U(A)/U(AJ), (6)

where the central subalgebra AJ is defined as AJ := {a ∈ A | aJ = Ja∗}. For the above almost-commutative
manifold, we therefore obtain the gauge group

G(I∞ ×∇M) = U(B)/U(BJ),

for the real structure J = JI ⊗ JM . However, since BJ ' BJI , we find that the gauge group of the almost-
commutative manifold is completely determined by the internal space, and we write

G(I∞ ×∇M) ' G(I∞) := {uJIuJ∗I | u ∈ U(B)}. (7)

3.3 The Kasparov product

We now show that the product I∞ ×∇M is an unbounded representative for the Kasparov product of the
KK-classes of I∞ and the canonical spectral triple for M . We first prove this for the cases where DI = 0,
and then show that the presence of DI is irrelevant at the level of KK-classes.

Let I∞ be an internal space over M , where DI = 0, and consider the unbounded Kasparov module
I := (BEA, 0), where E = Γ(E). We know from Proposition 3.5 that I∞ ×∇ M = (B, L2(E ⊗ S), D) is a
spectral triple, which thus yields an unbounded Kasparov module I ×∇ M = (BL

2(E ⊗ S)C, D) ∈ Ψ(B,C)
(Definition 2.24).

Proposition 3.6. The unbounded Kasparov module I×∇M represents the Kasparov product of (the classes
of) I ∈ Ψ(B,A) and (AL

2(S)C, /D) ∈ Ψ(A,C).
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Proof. It suffices to check the conditions of Theorem 2.26. Since DI = 0, conditions ii) and iii) are trivial, and
we only need to check Condition i). For all e in a dense subspace of BE = E, we need to check boundedness
of

DTe − Te /D on Dom( /D) ⊂ L2(S),

/DT ∗e − T ∗eD on Dom(D) ⊂ E ⊗A L2(S) ' L2(E⊗ S),

where D = /DE = −i(I⊗ c) ◦ (I⊗∇S +∇I ⊗ I). For ψ ∈ Dom( /D) we obtain

(DTe − Te /D)ψ = −i(I⊗ c) ◦ (I⊗∇S +∇I ⊗ I)e⊗ ψ − e⊗ /Dψ = −ic(∇Ie)⊗ ψ,

which is indeed bounded for all e in the dense subspace E . Next, for f⊗ψ ∈ Γ∞(B⊗S) ⊂ Dom(D) we obtain

( /DT ∗e − T ∗eD)(f ⊗ ψ) = /D(e|f)ψ − (e|f) /Dψ + i
(
e|c(∇If)

)
ψ = −ic

(
∇Ie|f

)
ψ,

where we have used the compatibility of the connection ∇I with the hermitian form (·|·)A, and so /DT ∗e −T ∗eD
is a zeroth-order differential operator for smooth e.

To prove a similar result for the case where DI 6= 0, we use the following two lemmas.

Lemma 3.7. If φ(B)EA is finitely generated projective as a right A-module, then for any self-adjoint, odd
endomorphism F ∈ EndA(E), the unbounded Kasparov B−A-modules (φ(B)EA, F ) and (φ(B)EA, 0) represent
the same class in KK(B,A).

Proof. Since E is a finitely generated projective A-module, all bounded endomorphisms are in fact compact,
i.e. EndA(E) = End0

A(E). The equivalence of the compact operators 0 and b(F ) = F (1 + F 2)−
1
2 is then

simply obtained via the operator homotopy t 7→ tb(F ), for t ∈ [0, 1]. Hence the modules (φ(B)EA, b(F )) and
(φ(B)EA, 0) are equivalent bounded Kasparov B −A-modules.

Lemma 3.8 (see also [Kuc97, Corollary 17]). Let (φ(B)EA, D) ∈ Ψ(B,A) and let T ∈ EndA(E) be self-
adjoint and odd. Then

1. (φ(B)EA, D + T ) is also an unbounded Kasparov module in Ψ(B,A), and;

2. (φ(B)EA, D + T ) and (φ(B)EA, D) represent the same class in KK(B,A).

Proof. 1. Since T is bounded and self-adjoint, it follows from the Kato-Rellich theorem for Hilbert modules
(see [KL12, Theorem 4.5]) that the sum D + T remains self-adjoint and regular. The only non-trivial
thing to prove is that D + T has compact resolvent, i.e. φ(b)(1 + (D + T )2)−1/2 ∈ End0

A(E) for
all b ∈ B ⊂ B. This is equivalent to showing that φ(b)(±i + D + T )−1 is compact. The operator
(±i+D+T )−1 maps E into Dom(D+T ) = DomD, so that (±i+D)(±i+D+T )−1 is a well-defined
bounded operator on E. From

φ(b)(±i+D + T )−1 = φ(b)(±i+D)−1(±i+D)(±i+D + T )−1

we then see that φ(b)(±i+D + T )−1 is compact.

2. The idea is to prove that (φ(B)EA, D+T ) ∈ Ψ(B,A) represents the Kasparov product [(φ(B)EA, D)]⊗A
[(AAA, 0)]. It is enough to show that all the conditions in Theorem 2.26 are satisfied. First of all,

A 3 a 7→ (D + T )Te(a) = ((D + T )e)a, (f ⊗ a) 7→ T ∗e (D + T )(f ⊗ a) = ((D + T )e, f)Aa,

are both clearly bounded on A and Dom(D + T ) = DomD, respectively, for all e ∈ DomD. In
particular, this holds for all e ∈ φ(B) DomD, which is a dense subset of φ(B)E. This proves that
Condition (i) in Theorem 2.26 is satisfied.
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Since Dom D = Dom(D+T ), Condition (ii) is also satisfied. For the final condition, a small calculation
shows that

((D + T )e,De) + (De, (D + T )e)

= ((D + T )e, (D + T )e)− ((D + T )e, Te) + (De, (D + T )e)

= ((D + T )e, (D + T )e)− (Te, Te) + (De,De) ≥ −‖T‖2(e, e),

for all e ∈ Dom D, since ((D + T )e, (D + T )e) and (De,De) are positive.

Corollary 3.9. The unbounded Kasparov module I ×∇M = (BE ⊗A L2(S)C, I⊗∇ /D +DI ⊗ γ5) represents
the Kasparov product of I = (BEA, DI) with (AL

2(S)C, /D).

Proof. By Lemma 3.7 we know that (BEA, DI) and (BEA, 0) represent the same Kasparov class. From
Proposition 3.6 it then follows that the cycle (BE ⊗A L2(S)C, /DE) also represents the Kasparov product of
(BEA, DI) with (AL

2(S)C, /D). According to Lemma 3.8 the cycle (BE ⊗A L2(S)C, /DE +DI ⊗ γ5) represents
the same Kasparov class as (BE ⊗A L2(S)C, /DE), so it also represents this Kasparov product.

Remark 3.10. 1. The construction of I ×∇M via Kasparov products fits naturally in the framework of
Mesland’s category of spectral triples [Mes14], where the internal space I∞ with the connection ∇ can
be seen as (a representative of) a morphism from the canonical triple for M to the almost-commutative
manifold I∞ ×∇M .

2. As is clear from the above discussion, the presence of the operator DI (or DI ⊗ γ5) is completely
irrelevant on the level of KK-classes. In this sense the KK-equivalence is too strong for our purposes,
because in the models under consideration the presence of the operator DI certainly does matter. We
will describe in Section 6 how this operator plays the role of a ‘mass matrix’ for the elementary fermions
of the gauge theory, and gives rise to the Higgs field in the noncommutative Standard Model (see also
Section 7.2 for a concrete example of DI as a mass matrix).

4 Principal modules

We would like to describe a classical gauge theory on a manifold M by considering an almost-commutative
manifold I∞×∇M . For this purpose we now restrict our attention to a special case of internal spaces, which
we call principal modules.

In Section 4.1 we first recall (part of) the classification of finite-dimensional real spectral triples that has
been done by Krajewski [Kra98] and by Paschke and Sitarz [PS98]. In Section 4.2 we then define the notion
of principal modules, and we show that, when the base manifold (which is of arbitrary dimension) is simply
connected, the gauge group of a principal module (as defined for internal spaces in Eq. (7)) is isomorphic to
the classical notion of the gauge group of a principal fibre bundle (as defined in Definition 2.11).

4.1 Real finite spectral triples

Finite-dimensional real spectral triples have been classified for the case of KO-dimension 0 [Kra98, PS98].
With similar arguments, this can be generalised to arbitrary KO-dimension [Sui14]. In the following theorem
we give the result for complex algebras, while also setting the matrix DF = 0. Below c. c. denotes complex
conjugation of the coefficients with respect to the standard basis of Cmij .

Theorem 4.1. Let F := (AF ,HF , 0, JF ) be a real finite spectral triple over a complex ∗-algebra AF . Up to
unitary equivalence, this triple is of the form

AF =

l⊕
i=1

MNi(C), HF =

l⊕
i,j=1

Hij , Hij :=

l⊕
i,j=1

MNi,Nj (C)⊗ Cmij ,
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such that mij = mji, and the inner product on each copy of MNi,Nj (C) is given by 〈t1, t2〉 = Tr(t∗1t2). If
J2
F = ε, then JF acts on Hij ⊕Hji, (i < j), as(

0 ε(·)∗
(·)∗ 0

)
⊗ (Idmij ◦ c. c.).

If J2
F = 1, the real structure JF acts on Hii 'MNi(C)⊗ Cmii as

(·)∗ ⊗ (Idmii ◦ c. c.),

If J2
F = −1, then mii is even and JF acts on (MNi(C)⊕MNi(C))⊗ C

mii
2 as(

0 −(·)∗
(·)∗ 0

)
⊗ (Idmii

2
◦ c. c.).

The different copies of MNi,Nj (C) (with respect to the above decomposition) in Hij are denoted by Hαij, where
1 ≤ α ≤ mij.

Remark 4.2. For finite-dimensional complex vector spaces V and W , consider the linear isomorphism

L : V ⊗W → Hom(W,V ), v ⊗ w 7→ (w′ 7→ v〈w,w′〉), v ∈ V, w,w′ ∈W,

where W denotes the conjugate vector space. Write Vi = CNi , endowed with the standard inner product.
Then the finite-dimensional Hilbert space Hij can also be put in the form

HF =
⊕

(i,j)∈K

Vi ⊗ V j ,

endowed with its standard inner product. Here K is a multiset consisting of pairs in I × I such that the
multiplicity of (i, j) is equal to (j, i) and such that the projection K → I on either of the factors is surjective
(this last condition is equivalent to the faithfulness of the action of AF on HF ). The algebra AF ⊗Aop

F acts
on a summand Vi ⊗ Vj as

(a, bop)(v ⊗ w) = aiv ⊗ b∗jw,

and the corresponding real structure on Vi ⊗ Vj → Vj ⊗ Vi is simply given by

JF (v ⊗ w) = ±w ⊗ v,

where the signs are determined by the KO-dimension of F . We will use this form of the real finite spectral
triple in Section 5.

From now on we assume that every real finite spectral triple (with DF = 0) is of the form as mentioned
in Theorem 4.1. Later on, the algebra (AF )JF will also be of interest, so we conclude this subsection by
determining its precise form.

Recall that, in general, for any real spectral triple (A,H, D, J), the complex central subalgebra AJ is
defined as AJ = {a ∈ A | aJ = Ja∗}.

Proposition 4.3. With notation as above, we have

(AF )JF =
{
a =

⊕
i∈I

λi idNi ∈ AF
∣∣ λi ∈ C; λi = λj if Hij 6= {0}

}
.
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Proof. We can assume that J is in standard form. Write AF =
⊕

iMNi(C) and consider an element
a =

⊕
i∈I ai ∈ AF . If t ∈ Hαij (1 ≤ α ≤ mij), then

a(JF t) = ±ajt∗ and JF (a∗t) = ±t∗ai.

Choose t∗ = ekl, where 1 ≤ k ≤ Nj and 1 ≤ l ≤ Ni. Then

(ajekl)γβ = (aj)γkδβl, and (eklai)γβ = δγk(ai)lβ ,

Therefore, aJF = JFa
∗ if and only if

(aj)γkδβl = (ai)lβδγk,

for all 1 ≤ k, γ ≤ Nj and 1 ≤ l, β ≤ Ni. It follows that ai, aj are diagonal and (aj)kk = (ai)ll for all
1 ≤ k ≤ Nj and 1 ≤ l ≤ Ni. Hence, a ∈ (AF )JF if and only if each ai = λiidNi and λi = λj if Hij 6= {0}.

The following definition is inspired by the proof of Proposition 4.3.

Definition 4.4. Let AF =
⊕

i∈IMNi(C) act on HF =
⊕

i,j∈I Hij as above. We define an equivalence
relation on I as follows. For i 6= j ∈ I we set i ∼ j if there exists a sequence i = i0, . . . , ik = j such that
Him,im+1

6= {0} for all 0 ≤ m < k. If i ∼ j we say that i is connected to j.

Proposition 4.3 in particular shows that C ⊂ (AF )JF ⊂ Z(AF ).

Corollary 4.5. We have the isomorphism (AF )JF '
⊕

[i]∈I/∼C. In particular, the two extreme cases are:

• (AF )JF = Z(AF ) if and only if Hij = 0 for all i 6= j (that is, I/∼ ' I).

• (AF )JF = C if and only if i is connected to j for all i, j ∈ I (that is, I/∼ ' {1}).

4.2 Principal modules

We now want to find spectral triples for gauge theories that are globally non-trivial. Recall from Defini-
tion 2.13 that a general gauge theory with structure group GF on a manifold M is given by a principal
GF -bundle P over M (along with a prescribed action functional or Lagrangian).

If (AF ,HF , DF , JF ) is a finite-dimensional real spectral triple, then the corresponding gauge group GF
is given by (see also Eq. (6))

GF := {uJFuJ∗F | u ∈ U(AF )} ' U(AF )/U((AF )JF ).

Such finite spectral triples can be used to describe globally trivial gauge theories over M (see the Introduc-
tion). Any finite spectral triple F automatically yields an internal space

I∞F =
(
Γ∞(M ×AF ),Γ∞(M ×HF ), DF , JF

)
,

where now DF and JF are seen as constant bundle endomorphisms acting on the fibre HF . We now want
to generalise this construction in order to describe globally non-trivial gauge theories. Of course, fibre-wise
we want to obtain the finite-dimensional situation that has been explained in Section 4.1.

The most straightforward way to obtain (examples of) globally non-trivial gauge theories over M would
then be as follows (see also [Ćać12, Lemma 2.5] and [BS11]). Take any real finite spectral triple F :=
(AF ,HF , DF , JF ) with gauge group GF , and let M be a smooth compact 4-dimensional Riemannian spin
manifold. Take any principal GF -bundle P→M . We construct the globally non-trivial triple of the form

P×GF F :=
(
Γ∞(P×GF AF ),Γ∞(P×GF HF ), DP, 1× JF

)
.

Here DP is an endomorphism acting on the vector bundle P×GF HF satisfying certain compatibility require-
ments (which we will specify later in Definition 6.1).
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Remark 4.6. Note that (in contrast to [Ćać12]) we do not require DP to be of the form 1 × DF , where
DF is a GF -invariant operator on HF , as such an assumption is too strong for our purposes. In particular,
in specific examples (such as the noncommutative Standard Model) that requirement would prevent the
appearance of a scalar (Higgs-like) field through inner fluctuations.

For the remainder of this section we ignore the endomorphism DP, since it is not relevant for the definition
of the gauge group, and we define the following:

Definition 4.7. Let F := (AF ,HF , 0, JF ) be a real finite spectral triple of the same form as in Theorem 4.1.
Write GF for the corresponding gauge group. Let M be a smooth compact Riemannian spin manifold and
let P→M be any principal GF -bundle. A triplet of the form

P×GF F :=
(
Γ∞(P×GF AF ),Γ∞(P×GF HF ), 1× JF

)
,

is called a principal GF -module over M (or C∞(M)) with fibre F . For brevity, we introduce the notation
B := P×GF AF , E := P×GF HF , B := Γ∞(B), E := Γ∞(E), and J := 1× JF .

Remark 4.8. The principal fibre bundle P is an explicit ingredient in the definition of a principal module.
From P we constructed the associated vector bundle E = P ×GF HF , and (as discussed in Section 2.2.1) P

equips E with a unique equivalence class of GF -atlases. Whenever we consider transition functions of E, we
therefore assume that they form a GF -atlas in the equivalence class obtained from P. Given a GF -atlas, the
vector bundle E inherits a hermitian structure from the inner product on HF , which is well-defined because
the action of GF on HF is unitary. For two equivalent GF -atlases, the corresponding hermitian structures
are isometric.

We stress that, given only the vector bundle E (with structure group GF ), we cannot reconstruct the
principal GF -bundle P. In order to reconstruct P, we also need to know the corresponding equivalence class
of GF -atlases.

Proposition 4.9. A principal module P×GF F is a real internal space (Γ∞(P×GF AF ),Γ∞(P×GF HF ), 0, 1×
JF ) over M .

Proof. The action of GF on AF is given by conjugation when AF is considered as a ∗-subalgebra of End(HF ).
Consequently, the fibre-wise action of the ∗-algebra bundle B = P ×GF AF on E is well defined, and hence
B is a unital ∗-algebra subbundle of End(E). The operator DI = 0 is trivially a hermitian endomorphism.
Since the operator JF commutes with GF , it induces a real structure Jx on each fibre of E. The operator
J = 1×JF denotes the anti-linear operator on E that is induced by these real structures Jx on the fibres.

Remark 4.10. Because (uJFuJ
∗
F )a(JFu

∗J∗Fu
∗) = uau∗ for all a ∈ AF , u ∈ U(AF ), we see that the given

action of an element uJFuJ
∗
F ∈ GF on AF coincides with the usual conjugation of the element u ∈ U(AF ).

Since (AF )JF ⊂ Z(AF ), the map τ : GF 3 uJFuJ∗F 7→ Ad(uJFuJ
∗
F ) = Ad u ∈ Inn(AF ) does not depend on

the choice of u. Thus, the surjective map τ : GF → U(AF )/U(Z(AF )) ' Inn(AF ) is induced by the usual
map U(AF )→ Inn(AF ) (recall that GF is the quotient U(AF )/U((AF )JF )).

4.2.1 The gauge group

Consider a principal module P×GF F =
(
B, E , J

)
over M . Using the classification of AF and HF , as given

in Section 4.1, we can decompose the bundles B = P×GF AF and E = P×GF HF in a similar way:

B =
⊕
i∈I

Bi, Bi = P×GF MNi(C),

E =
⊕
i,j∈I

Eij , Eij = P×GF Hij .

Each vector bundle Eij carries the obvious action by B ⊗ Bop. Note, however, that even though Hij =
CNi ⊗ CNj ⊗ Cmij , Eij is not necessarily of the form Ei ⊗ Ej ⊗ Cmij for some vector bundles Ei and Ej (see
Section 7.1 for an example).
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Note that, for the case i = j, the bundle Eii is necessarily isomorphic to (a number of copies of) Bi. Indeed,
the GF -valued transition functions act on the fibres of Eii, which are isomorphic to (copies of) MNi(C), by
conjugation with an element u ∈ U(Ni), and are therefore inner automorphisms of the algebra MNi(C). By
Remark 4.10 these transition functions are equal to those for the ∗-algebra bundle Bi.

Denote by [i] the equivalence class of all j ∈ I that are connected to i (see Definition 4.4). Write

B[i] =
⊕
s∈[i]

Bs,

and write b[i] for the projection of an element b onto B[i]. As (B[i])J = C∞(M) we obtain (see also Corol-
lary 4.5)

BJ =
⊕

[i]∈I/∼

C∞(M).

The gauge group of the principal module P×GF F = (B, E , J) is defined as (see Eq. (7))

G(P×GF F ) :=
{
uJuJ∗ | u ∈ U(B)

}
' U(B)/U(BJ).

At the same time, a principal GF -bundle P→M is equipped with the gauge group G(P) = Γ∞(Ad P) (see
Section 2.2). We now aim at showing that for a principal module P ×GF F , the gauge groups G(P ×GF F )
and G(P) coincide, provided that M is simply connected.

Consider the group bundle map

φ : U(B) ' P×GF U(AF )→ P×GF U(HF ), ux 7→ uxJxuxJ
∗
x .

The image φ(U(B)) is a group subbundle of P ×GF U(HF ), with fibres isomorphic to GF . In fact, this
subbundle is isomorphic to the group bundle Ad P. The induced map φ∗ on the sections U(B) ' U(Γ∞(B))→
U(Γ∞(End(E))) is precisely the map u 7→ uJuJ∗, u ∈ U(B). Thus, φ∗ maps U(B) into Γ∞(Ad P). However,
as discussed in Section 2.4, this map φ∗ need not always be surjective. We will proceed by showing that in
our case, under the assumption that M is simply connected, we do have surjectivity.

Proposition 4.11. Let P ×GF F be a principal module over M . There exists a group subbundle U ⊂ U(B)
such that the restriction φ : U→ Ad P is a covering map.

Proof. Consider the subbundle E[i] := B[i] · E (i.e. the subbundle on which B[i] acts non-trivially). Define the
group subbundle

U := {u ∈ U(B) | det[i]u[i] = 1 for all [i]},

where det[i] u[i] denotes the fibrewise determinant of u[i] seen as an element of the bundle End E[i]. Denote
the rank of E[i] by N[i]. Since any element u ∈ U(B) can be written as u = vw, where v ∈ U and w ∈ U(BJ)

(just take w[i] =
(
det[i] u[i]

) 1
N[i] idN[i]

and v = uw−1), the image φ(U) is equal to the image φ(U(B)) = Ad P.
Let us calculate the kernel φx : Ux → (Ad P)x. Choose u ∈ Ux ∩ kerφx. Since u ∈ kerφx, each u[i] is

diagonal. Because det[i] u[i] = 1, we obtain that u[i] = λ[i]idN[i]
, where λ[i] is an N[i]-th root of unity. Since

there are only finitely many equivalence classes [i], the group Ux ∩ kerφx is finite.
The condition for a map to be a covering map is of a local nature, so we can assume that all bundles are

globally trivial. In that case, it follow from the fact that Ux ∩ kerφx is finite, that U → Ad P is a covering
map.

Combining Proposition 4.11 with Corollary 2.22 and Theorem 2.12 immediately yields the desired result:

Theorem 4.12. Let P×GF F be a principal module over M . If M is simply connected, then

G(P×GF F ) ' Γ∞(Ad P) ' G(P).
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Remark 4.13. It follows from the above that for each element g of the gauge group G(P ×GF F ), there
exists a unitary section u ∈ B with (fibre-wise) determinant equal to 1, such that g = uJuJ∗. In this
sense, the gauge group is unimodular by default. This only holds for complex algebras B. For real algebras
(including the one describing the noncommutative Standard Model [Con96, CCM07]) one needs to impose
unimodularity by hand (see also [LS01] and references therein).

5 Gauge modules

In Section 4.2 we introduced the notion of principal modules, which have an entirely geometric nature. In
this section we introduce so-called gauge modules, which are of a purely algebraic nature. We show that each
gauge module is in fact also a principal module, but unfortunately not all principal modules can be obtained
from gauge modules.

Inspired by the standard form of finite spectral triples as obtained in Theorem 4.1 and Remark 4.2, we
introduce the following definition, which might be considered an extension of Krajewski diagrams to the
globally non-trivial case.

Definition 5.1. Let A := C∞(M). Suppose we are given a finite set of non-degenerate hermitian finitely
generated projective A-modules Ei (for i ∈ I = {1, . . . , l}), and define the module algebras Bi := EndA(Ei).
Take a multiset K consisting of pairs in I × I such that the multiplicity of (i, j) is equal to the multiplicity
of (j, i), and such that the projection K → I on either of the factors is surjective. Denote the multiplicity
of the pair (i, j) by mij and write (iα, jα) (1 ≤ α ≤ mij) to distinguish the pairs in K that occur more than
once (see also Theorem 4.1 for this notation).

A gauge module (B, E , J) is of the form

B :=
⊕
i∈I
Bi, E :=

⊕
(i,j)∈K

Ei ⊗A Ej , J : Ei ⊗A Ej → Ej ⊗A Ei,

where J is of the same standard form as the finite operator JF in Theorem 4.1 (and which depends on the
value of J2 = ε = ±1, e.g. Jij(eiα ⊗ ejα) = εejα ⊗ eiα , for eiα ⊗ ejα ∈ Eiα ⊗ Ejα if j < i).

The assumption that the projection K → I is surjective ensures that the action of B on E is faithful.
From the Serre-Swan theorem we know that each module Ei is given by the smooth sections of a vector
bundle Ei → M . Because the hermitian structure on Ei is non-degenerate, this yields a hermitian structure
on Ei. By Theorem 2.5 the module algebra Bi is given by the smooth sections of a unital weak ∗-algebra
bundle Bi → M . Since Bi = EndA(Ei) we obtain Bi = End(Ei). The local triviality of Bi then follows from
the local triviality of Ei, which means that Bi is in fact a unital ∗-algebra bundle.

As mentioned in Remark 4.8, given a principal module P ×GF F = (B, E , J) (but not P itself), it is
not possible to reconstruct P, unless we are given the equivalence class of G-atlases on the vector bundle
E = P ×GF HF . However, we will show below that for gauge modules it is possible to uniquely reconstruct
the corresponding principal GF -bundle. The main distinctive feature of gauge modules is that the vector
bundle E decomposes as a direct sum of tensor products of hermitian vector bundles Ei. To each Ei there
uniquely (up to isomorphism) corresponds a principal U(Ni)-bundle. From these principal U(Ni)-bundles
we can subsequently construct the corresponding principal GF -bundle P.

Proposition 5.2. Let (B, E , J) be a gauge module. Then:

1. There exist a real finite spectral triple F = (AF ,HF , 0, JF ) and a principal U(AF )-bundle Q such that
(B, E , J) = Q×U(AF ) F .

2. There exists a principal GF -bundle P such that (B, E , J) = P×GF F .

Proof. 1. The gauge module (B, E , J) is constructed from a given set of hermitian vector bundles Ei of
rank Ni and the index (multi)sets I and K. By assumption Bi = End(Ei), and so Bi has typical fibre
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MNi(C). We define

AF :=
⊕
i∈I

MNi(C), HF :=
⊕

(i,j)∈K

CNi ⊗ CNj .

For each Ei, there is a principal U(Ni)-bundle Qi (which is unique up to isomorphism) such that
Ei ' Qi ×U(Ni) CNi (see Example 2.14). Let (U, uiUV ) be a U(Ni)-atlas on Ei corresponding to local

trivialisations of Qi. The transition functions ujUV of Ej are given by the right action of (ujUV )∗ on CNj
(see Eq. (4)), which is implemented as (vi⊗wj)(ujUV )∗ = JujUV J

∗(vi⊗wj). Hence we obtain transition
functions for E of the form

gUV =
⊕

(i,j)∈K

uiUV ⊗ (ujUV )∗
op

=
⊕

(i,j)∈K

uiUV Ju
j
UV J

∗.

Writing uUV =
⊕

i∈I u
i
UV ∈ C∞(U ∩ V,U(AF )), we see that gUV = uUV JuUV J

∗ ∈ C∞(U ∩ V,GF ).
Since the uiUV are transition functions of πi : Qi →M , we see that the uUV are the transition functions
of the principal U(AF )-bundle

Q := Q1 ×M · · · ×M Ql := {(q1, . . . , ql) ∈ Q1 × · · · × Ql | π1(q1) = · · · = πl(ql)}.

Since the action of uUV on HF is given by gUV = uUV JuUV J
∗, we see that E ' Q ×U(AF ) HF as

hermitian vector bundles. As conjugation by uUV coincides with conjugation by gUV on the algebra
AF , we also have B ' Q×U(AF )AF . It is straightforward to check that J is invariant under conjugation
by a transition function gUV , and hence it is simply of the form J = 1× JF . Since J is an anti-unitary
operator satisfying J2 = ε and the order-zero condition, it follows that JF is a real structure on HF .

2. Given the principal U(AF )-bundle Q from the first part of this lemma, we simply construct a principal
GF -bundle as

P := Q×U(AF ) GF ,

where u ∈ U(AF ) acts on GF as left multiplication by the element uJFuJ
∗
F . The transition functions

of P are given by gUV = uUV JuUV J
∗ ∈ C∞(U ∩ V,GF ). It then straightforwardly follows that

P×GF HF ' (Q×U(AF ) GF )×GF HF ' Q×U(AF ) HF ' E,

and similarly we obtain P×GF AF ' B.

The above proposition shows that each gauge module is in fact a principal module P ×GF F (where we
can uniquely reconstruct F and P), where P can be lifted to a principal U(AF )-bundle Q (which is unique up
to isomorphism). We now show the converse, namely that a principal module P×GF F with a lift τ : Q→ P

uniquely corresponds to a gauge module.

Proposition 5.3. Let P×GF F = (B, E , J) be a principal module, and suppose we have a principal U(AF )-
bundle Q that lifts P. Then Q naturally induces a gauge module structure on (B, E , J).

Proof. As we have seen in Section 4.1, the real finite spectral triple F = (AF ,HF , 0, JF ) has a decomposition
of the form

AF =
⊕
i∈I

MNi(C), HF =
⊕

(i,j)∈K

CNi ⊗ CNj .

Thus we have U(AF ) = ×i∈IU(Ni), and the principal U(AF )-bundle Q then decomposes as Q1×M · · · ×M Ql,
where each Qi is a principal U(Ni)-bundle given by Qi := Q×U(AF ) U(Ni). We then construct

Bi := Q×U(AF ) MNi(C) ' Qi ×U(Ni) MNi(C), Ei := Q×U(AF ) CNi ' Qi ×U(Ni) C
Ni ,
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where U(AF ) = ×i∈IU(Ni) acts on CNi as left multiplication by the factor U(Ni), and on MNi(C) as
conjugation by U(Ni). The bundle Ei naturally inherits a hermitian structure from the standard inner
product on CNi . Because Q lifts P, the bundles B and E corresponding to the principal module P×GF F are
in fact of the form

B := Q×U(AF ) AF =
⊕
i∈I

Bi, E := Q×U(AF ) HF =
⊕

(i,j)∈K

Ei ⊗ Ej .

Furthermore, as the transition functions of Bi are given by conjugation by the transition functions of Ei, and
as its fibre equals MNi(C) = End(CNi), it follows that Bi = End(Ei) and Bi acts as such on E. Hence we have
shown that the principal module P×GF F is equal to the gauge module given by the modules Ei := Γ∞(Ei)
and the real structure J = 1× JF .

The previous two propositions then lead us to the main result of this section:

Theorem 5.4. A gauge module is characterised uniquely (up to isomorphism) by a principal module P×GF F
for which there exists a principal U(AF )-bundle Q that lifts P.

Proof. Given a gauge module, we have shown in Proposition 5.2 that we can uniquely construct a real finite
spectral triple F = (AF ,HF , 0, JF ), a principal GF -bundle P, and a principal U(AF )-bundle Q that lifts P.
Conversely, given such F , P, and Q, Proposition 5.3 shows that P×GF F is in fact given by a gauge module.
These constructions are inverse to each other.

Remark 5.5. 1. If there exists a principal U(AF )-bundle Q that lifts P, then Q is unique up to isomor-
phism, because each principal U(Ni)-bundle Qi is unique up to isomorphism (cf. Example 2.14).

2. Every globally trivial principal module, constructed from a finite spectral triple F and the principal
bundle P = M ×GF , is in fact a gauge module, with the lift Q = M × U(AF ).

3. An example of a principal module that is (in general) not a gauge module (except when for instance
the underlying manifold is simply connected and 4-dimensional) is described in Section 7.1.

6 Gauge theory

In this section we show how principal modules describe gauge theories on 4-dimensional compact spin man-
ifolds. First we will introduce a ‘mass matrix’. Viewing the (now massive) principal module as an internal
space and endowing it with a (suitable) connection, we can then use it to construct an almost-commutative
manifold. Subsequently, we determine the inner fluctuations and provide an explicit formula for the spectral
action of this almost-commutative manifold. We end this section by stating our main result, namely that
such an almost-commutative manifold indeed describes a gauge theory in the sense of Definition 2.13.

6.1 Principal almost-commutative manifolds

Definition 6.1. Consider a principal module P ×GF F = (B, E , JI) (from here on we include a subscript I
in order to differentiate between the different operators occurring). In order to be able to describe massive
gauge theories, we now introduce a ‘mass matrix’

DI ∈ Γ∞(End(E)) ' EndA(E),

satisfying

DI = D∗I , DIJI = ε′JIDI ,
[
[DI , a], JbJ∗

]
= 0 ∀a, b ∈ B,

where the sign ε′ (along with the signs ε, ε′′ obtained through the finite spectral triple F ) is determined by
the KO-dimension according to the same table as in Definition 2.23. We then call I∞P := (B, E , DI , JI) a
massive principal module over M . We say I∞P is even if there exists a grading operator γI on E such that
DIγI = −γIDI , γIJI = ε′′JIγI and aγI = γIa for all a ∈ B.
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It is an immediate consequence of the definition that a massive principal module over M is a real internal
space over M . If (B, E , JI) is in fact a gauge module, we shall call (B, E , DI , JI) a massive gauge module.

Let P ×GF F be a principal module. Denote by gF the Lie algebra of the structure group GF . Take
a connection on P, i.e. for each local trivialisation (Ui, hi) of P we have a (local) gF -valued 1-form ωi ∈
Ω1(Ui, gF ) such that

ωj = g−1
ij dgij + g−1

ij ωigij

for all i, j such that Ui ∩ Uj 6= ∅ (see Definition 2.8). These connection one-forms yield a connection
∇ : E → E ⊗A Ω1(M) by defining locally (i.e. on local trivialisations (Ui, hi) of E that are induced by those
of P) the expression

∇|Ui := h−1
i ◦ (d+ ωi) ◦ hi,

where d is the exterior derivative acting on the components of the local trivialisation. The transformation
property of ωi ensures that ∇ is globally well-defined. Connections on E of this form are also referred to as
GF -compatible connections, or simply GF -connections.

Consider the associated vector bundle ad P := P ×ad gF , where ad is the adjoint action of GF on gF .
Since gF is (isomorphic to) the image of u(AF ) in u(HF ) under the map t 7→ t+ JF tJ

∗
F , the bundle ad P is

(isomorphic to) the image of u(B) in u(E) under the map τ : t 7→ t+ JItJ
∗
I . The kernel of this map is equal

to the set of all elements t ∈ u(B) satisfying t = −JItJ∗I = JIt
∗J∗I , or equivalently,

ker τ = {t ∈ u(B) | tJI = JIt
∗} = u(BJ).

Hence we see that ad P is isomophic to u(B)/u(BJ). In particular, gF = u(AF )/u((AF )JF ).

Lemma 6.2. The induced map τ : u(B)→ Γ∞(ad P) is surjective, and

Γ∞(ad P) ' u(B)/u(BJ).

Moreover, ad P is isomorphic to the subbundle

u = {t ∈ u(B) | Tr[i] t[i] = 0 for all [i]}

of u(B), where Tr[i] t[i] denotes the fibrewise trace of t[i] seen as an element of the bundle End E[i], and
u(B) = ker τ ⊕ u, with ker τ = u(BJ).

Proof. Though the first two statements follow immediately from the exactness of the Serre-Swan equivalence
functor Γ∞, we prove them directly by showing that ad P is isomorphic to the subbundle u (compare also
Proposition 4.11). Indeed, every t ∈ u(B) can be written as s + q, where s ∈ u and q ∈ u(BJ) (just take
q[i] = 1

N[i]
Tr[i](t[i]) · id[i] and s = t− q). Hence τ |u is surjective.

Suppose now that t ∈ ker τ |u. Because t ∈ ker τ , we obtain t[i] = λ[i]idN[i]
, where λ[i] ∈ iR (see

Proposition 4.3). Since t ∈ u, each of the t[i] is traceless. Hence each of the λ[i] is zero, and consequently,
the kernel of τ |u is trivial.

Lemma 6.3. Let P ×GF F = (B, E , JI , γI) be an even principal module. Any GF -compatible connection ∇
on E commutes with the real structure JI (in the sense that ∇µJI = JI∇µ) and the grading γI .

Proof. It is sufficient to show that JF and γF commute with elements in gF . Any element in gF is of the
form t+ JF tJ

∗
F , with t ∈ u(AF ). In particular, JF commutes with these elements. Since γF commutes with

elements in AF , and (anti-)commutes with JF , the grading γF commutes with elements in gF , too.

If the principal module is obtained from a gauge module (B, E , JI), we can construct such a GF -connection
explicitly as follows. Consider the decomposition E =

⊕
(i,j) Ei⊗A Ej , and choose a hermitian connection ∇i

on each Ei. We define

∇ :=
⊕
(i,j)

(
∇i ⊗ I + I⊗∇j

)
,
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where the conjugate connection ∇j is defined in Section 2.3. In order to see that ∇ corresponds to a
connection on the principal bundle P, we first need to check that its local connection one-forms take values

in the Lie algebra gF . If (U, hiU) are local trivialistions of Ei, we can write ∇i|U =
(
hiU
)−1 ◦ (d + ωiU) ◦ hiU

for some local connection one-forms ωiU ∈ Ω1(U, u(Ni)). The connection ∇ then locally has the connection
1-form

ωU :=
⊕
(i,j)

(
ωiU ⊗ I + I⊗ (ωjU

∗
)op
)
∈ Ω1(U,AF ⊗Aop

F ).

This ensures that [∇, ·] yields a connection on B⊗Bop, which preserves B and Bop. Writing tU =
⊕

i∈I ω
i
U , we

can write ωU = tU +JF tUJ
∗
F ∈ Ω1(U, gF ). To verify that ωU defines a connection on the principal GF -bundle

P we need to show that ωU transforms correctly under the GF -valued transition functions.
So, consider two neighbourhoods U and V such that U ∩ V 6= ∅, and let u = ×ui ∈ C∞(U ∩ V,U(AF ))

be a transition function for the principal U(AF )-bundle Q. The corresponding transition function for the
principal GF -bundle P is g := uJFuJ

∗
F . Since the ωiU are connection forms on Ei, tU transforms as

tV =
⊕
i∈I

ωiV =
⊕
i∈I

(u∗iω
i
Uui + u∗i dui) = u∗tUu+ u∗du.

We then see that

ωV = tV + JF tV J
∗
F = u∗tUu+ u∗du+ JF (u∗tUu+ u∗du)J∗F

= u∗JFu
∗J∗F tUuJFuJ

∗
F + JF (u∗JFu

∗J∗F tUuJFuJ
∗
F )J∗F

+ u∗JFu
∗J∗F (du)JFuJ

∗
F + u∗JFu

∗J∗FuJF (du)J∗F

= g−1(tU + JF tUJ
∗
F )g + g−1dg = g−1ωUg + g−1dg.

Thus, U 7→ ωU indeed defines a GF -connection.

Proposition 6.4. Let (B, E , J) be a gauge module. A connection on E is of the form
⊕

(i,j)

(
∇i ⊗ I + I⊗∇j

)
if and only if it induces a connection on the principal U(AF )-bundle Q from Proposition 5.2.

Proof. Consider a local trivialisation (U, hU) of P, and let ωU ∈ Ω1(U, u(AF )) be a local connection form on
Q, yielding a connection ∇ on E = Q×U(AF ) HF . Since the decomposition u(AF ) =

⊕
i∈I u(Ni) is preserved

by the action of U(AF ), we can write ωU =
⊕

i∈I ωi, where each ωi ∈ Ω1(U, u(Ni)) yields a connection ∇i

on Ei. For x ∈ U , the connection form ωU acts on (Ei ⊗ Ej)|x ' CNi ⊗ CNj as

ω(vi ⊗ wj) = ωivi ⊗ wj + vi ⊗ wjω∗j ,

from which it follows that ∇ =
⊕

(i,j)

(
∇i ⊗ I + I⊗∇j

)
.

For the converse, consider a connection on E of the form ∇ =
⊕

(i,j)

(
∇i ⊗ I + I⊗∇j

)
. On a local

trivialisation (U, hU)i of Ei, each connection ∇i yields a local connection form ωi ∈ Ω1(U, u(Ni)). Then
ωU :=

⊕
i∈I ωi ∈ Ω1(U, u(AF )) is a connection form on Q that induces ∇.

Definition 6.5. Let I∞P = (B, E , DI , JI) be a massive principal module of KO-dimension k over M , where
M now has dimension 4. Let ∇ be a GF -compatible connection on E . We construct the real almost-
commutative manifold I∞P ×∇M as in Definition 3.4. Since I∞P is now a massive principal module (instead
of a more general internal space), we will refer to I∞P ×∇M as a principal almost-commutative manifold.

If I∞P is even with grading γI , we obtain a real even almost-commutative manifold I∞P ×∇M . Since the
connection ∇ is GF -compatible, it automatically commutes with JI and γI (see Lemma 6.3). Moreover,
the same condition implies that the induced connection [∇, ·] on End E restricts to B. It then follows from
Proposition 3.5 that I∞P ×∇M is a real even spectral triple of KO-dimension 4 + k (mod 8).

We continue in the remainder of this section, as in the usual approach for globally trivial almost-
commutative manifolds (see [Con96, CCM07] or the review [DS12]), by generating the gauge fields and
Higgs fields via inner fluctuations, and subsequently calculating the spectral action.

24



6.2 Inner fluctuations

Let (B,H, D) be a spectral triple. Consider the generalised one-forms given by

Ω1
D(B) :=

{∑
j

aj [D, bj ]
∣∣ aj , bj ∈ B}.

For the canonical triple (A, L2(S), /D) of a spin manifold M , the generalised one-forms Ω1
/D
(A) are simply

given by the Clifford multiplication c of the usual one-forms Ω1(M). To be precise, for smooth functions
f1, f2 ∈ A, we obtain f1[ /D, f2] = −if1c(df2).

Definition 6.6. Let (B,H, D, J) be a real spectral triple. An inner fluctuation of the operator D is a
self-adjoint element A = A∗ ∈ Ω1

D(B). Such an inner fluctuation yields the fluctuated operator

DA := D +A+ ε′JAJ∗,

where the sign ε′ = ±1 is determined by the KO-dimension of the spectral triple (see Definition 2.23).

For the remainder of this paper, we again assume that the dimension of M is equal to 4. We would like
to show that, for a principal almost-commutative manifold, these inner fluctuations yield gauge fields and
scalar fields (the latter are interpreted as Higgs fields in the noncommutative Standard Model). The inner
fluctuations of the twisted Dirac operator /DE := I⊗∇ /D are (finite sums of) elements of the form

a[ /DE, b] = −i(I⊗ c) ◦ (a[∇, b]⊗ I),

for a, b ∈ B, where c denotes Clifford multiplication. The fact that ∇ is a GF -compatible connection
ensures that a[∇, b] ∈ B ⊗A Ω1(M) ' Ω1(M, B). Requiring that a[ /DE, b] is self-adjoint then implies that
a[∇, b] ∈ Ω1(M, u(B)), where u(B) contains the anti-hermitian elements of B. An arbitrary inner fluctuation
of /DE is thus given by

α :=
∑
j

aj [∇, bj ] ∈ Ω1(M, u(B)).

We can then write Ja[ /DE, b]J
∗ = −i(I⊗ c) ◦ (JIαJ

∗
I ⊗ I), and consequently we have

a[ /DE, b] + Ja[ /DE, b]J
∗ = −i(I⊗ c) ◦ ((α+ JIαJ

∗
I )⊗ I).

The inner fluctuations of the operator DI ⊗ γ5 are of the form φ⊗ γ5, where

φ = φ∗ :=
∑
j

aj [DI , bj ] ∈ Γ∞(End(E)).

Proposition 6.7. The fluctuated Dirac operator DA := D+A+ JAJ∗ for a real even almost-commutative
manifold is of the form

DA = 1⊗∇′ /D + Φ⊗ γ5,

where ∇′ := ∇ + β for some β ∈ Ω1(M, ad P), and Φ = Φ∗ := DI + φ + JIφJ
∗
I ∈ Γ∞(End(E)) for some

φ = φ∗ :=
∑
j aj [DI , bj ].

Proof. The expression β = α + JIαJ
∗
I is an ad P-valued 1-form on M (see Lemma 6.2). Noting that ε′ = 1

by assumption, the statement follows straightforwardly.

The construction of I∞P ×∇M explicitly uses the choice of a connection ∇. However, we now show that
this choice is irrelevant once we take the inner fluctuations into account. We need the following lemma.
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Lemma 6.8. Let B → M be a unital ∗-algebra bundle, and let ∇̃ be a connection on B = Γ∞(B) such that

∇̃(1) = 0, where 1 denotes the identity section. Write A = C∞(M). Then{∑
j

aj∇̃(bj)
∣∣ aj , bj ∈ B} = B ⊗A Ω1(M) ' Ω1(M, B). (8)

Consequently, Ω1(M, u(B)) is given by the anti-hermitian elements in
{∑

j aj∇̃(bj) | aj , bj ∈ B
}

.

Proof. Since ∇̃(b) ∈ B ⊗A Ω1(M), the left hand side of Eq. (8) is clearly contained in the right hand side of
Eq. (8). For the converse inclusion, first suppose that both aj and bj are in A ⊂ Z(B). In that case,{∑

j

fj∇̃(gj IdB)
∣∣ fj , gj ∈ A} ' {∑

j

fjdgj
∣∣ fj , gj ∈ A} = Ω1(M).

It follows from this that {∑
j

aj∇̃(gj1)
∣∣ aj ∈ B, gj ∈ A} = B ⊗A Ω1(M).

Of course, the left-hand side of the previous equation is contained in
{∑

j aj∇̃(bj) | aj , bj ∈ B
}

, which
proves the other inclusion.

Proposition 6.9. Let P×GF F = (B, E , JI) be a principal module over M (for simplicity we consider here
the massless case DI = 0) with two (GF -compatible) connections ∇ and ∇′. Then I⊗∇′ /D is obtained as an
inner fluctuation of I⊗∇ /D.

Proof. The difference between the two connections β := ∇′−∇ is an element in Ω1(M, ad P). By Lemma 6.2
there exists a (unique) element α ∈ Ω1(M, u) ⊂ Ω1(M, u(B)) such that β = α + JIαJ

∗
I . The connection

∇̃ = [∇, ·] on End(E) restricts to a connection on B, and satisfies ∇̃(1) = 0. Lemma 6.8 now implies that β
is obtained as an inner fluctuation.

Remark 6.10. We have seen that considering inner fluctuations of the Dirac operator essentially replaces the
GF -connection ∇ (chosen in the construction of the almost-commutative manifold I∞P ×∇M) by a different
(arbitrary) GF -connection ∇′. Therefore, after taking into account the inner fluctuations, our construction
of principal almost-commutative manifolds is essentially independent of the initial choice of the connection
∇.

However, we also note that the endomorphisms Φ obtained through inner fluctuations in general remain
dependent on the initial choice of DI .

6.3 The spectral action

As mentioned immediately below Definition 2.13, the dynamics of a gauge theory can be obtained from a
gauge-invariant action functional. In the case of almost-commutative manifolds, such an action functional
can be formulated in terms of the spectral triple.

Let us first recall the definitions of the bosonic and fermionic action functionals for an arbitrary spectral
triple T = (A,H, D). The bosonic part of the action functional is given by the spectral action [CC97], defined
as

Sb(T ) := Tr

(
f

(
DA

Λ

))
.

Here Tr denotes the operator trace on B(H), DA is the fluctuated Dirac operator, f : R→ R is some positive
even function, and Λ ∈ R is a (large) cut-off parameter. The function f is assumed to decay sufficiently
rapidly at infinity so that the trace of f(DA/Λ) exists. In particular, f could be considered as a smooth
approximation to a cut-off function (and as such it counts the number of eigenvalues of DA whose absolute
values are smaller than Λ), but this viewpoint is not necessary for the following.
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If the spectral triple is even (with grading γ) and has a real structure J of KO-dimension 2, the fermionic
action [Con06] is defined as

Sf (T ) :=
1

2
〈Jξ̃,DAξ̃〉,

where ξ̃ is the Grassmann variable corresponding to a vector ξ ∈ H+ (i.e. γξ = ξ).
We quote the following well-known result:

Proposition 6.11 (see e.g. [DS12, §2.6.1]). For a real spectral triple T = (A,H, D, J, γ) of KO-dimension
2, the action functionals Sb(T ) and Sf (T ) are invariant under the action of the gauge group G(T ).

We now provide explicit formulas for the spectral action of principal almost-commutative manifolds
(formulas for the fermionic action will only be given for the example of electrodynamics in Section 7.2). The
spectral action was calculated in [CCM07, Con06] for the product triple M × F , where F was chosen in
order to describe the full Standard Model of elementary particle physics. In the remainder of this section we
largely follow the notation of [DS12], where also detailed derivations of the formulas provided here can be
found.

For the canonical triple (C∞(M), L2(S), /D) of a smooth compact 4-dimensional Riemannian spin manifold
M , the spectral action yields the asymptotic formula

Sb(M) ∼Λ→∞

∫
M

LM (gµν)
√
|g|d4x+O(Λ−1),

where g is the Riemannian metric on M . The Lagrangian LM is given by

LM (gµν) :=
f4Λ4

2π2
− f2Λ2

24π2
s+

f(0)

16π2

( 1

30
∆s− 1

20
CµνρσC

µνρσ +
11

360
R∗R∗

)
. (9)

Here s denotes the scalar curvature of M , ∆ is the scalar Laplacian, C is the Weyl curvature, and R∗R∗ is a
topological term, which integrates to (a multiple of) the Euler class. The coefficients fk (for k > 0) are the
moments of f , defined as

fk :=

∫ ∞
0

f(t)tk−1dt.

We now provide the spectral action for a principal almost-commutative manifold. As all calculations are
local, the result is exactly the same as for the spectral action of a product triple M × F , and we refer to
[DS12] for the detailed calculations.

In Proposition 6.7 we saw that the fluctuated Dirac operator is determined by a connection ∇′ = ∇+ β
and an endomorphism Φ on E. From here on we shall work on a local trivialisation (U, hU), where we can
write ∇|U = h−1

U ◦ (d+ωU) ◦hU , and define the local gF -valued 1-form B := ωU +hU ◦β|U ◦h−1
U ∈ Ω1(U, gF )

(for ease of notation we do not make the dependence of B on the local chart U explicit). Thus B is the local
connection form for ∇′. Using a local coordinate basis ∂µ, we define Bµ := B(∂µ) ∈ C∞(U, gF ). We omit
the local trivialisation hU from our notation, so we write e.g. ∇′µ = ∂µ +Bµ. Furthermore, we introduce the
notation

DµΦ := [∇′µ,Φ] = ∂µΦ + [Bµ,Φ], Fµν := ∂µBν − ∂νBµ + [Bµ, Bν ].

Proposition 6.12. The spectral action for a principal almost-commutative manifold I∞P ×∇ M is asymp-
totically given by the local formula

Sb(I
∞
P ×∇M) ∼Λ→∞

∫
M

L(gµν , Bµ,Φ)
√
|g|d4x+O(Λ−1),

for

L(gµν , Bµ,Φ) := NLM (gµν) + LB(gµν , Bµ) + LH(gµν , Bµ,Φ).
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Here LM (gµν) is given in Eq. (9), and N is the rank of E. LB gives the kinetic term of the gauge field and
equals

LB(gµν , Bµ) :=
f(0)

24π2
tr(FµνF

µν),

where tr denotes the fibre-wise trace for endomorphisms on the bundle E⊗S. LH gives the Higgs Lagrangian
given by

LH(gµν , Bµ,Φ) := −2f2Λ2

4π2
tr(Φ2) +

f(0)

8π2
tr(Φ4) +

f(0)

24π2
∆
(

tr(Φ2)
)

+
f(0)

48π2
s tr(Φ2) +

f(0)

8π2
tr
(
(DµΦ)(DµΦ)

)
,

where the first two terms form the Higgs potential, the third is a boundary term, the fourth couples the Higgs
field to the scalar curvature, and finally we have the kinetic term including interactions with the gauge field.

Remark 6.13. Although the above explicit formulas for the spectral action are exactly the same as for a
product triple M × F , there can nonetheless be a significant difference, because the constant matrix DF is
replaced by a global endomorphism DI . For a product triple M × F , the inner fluctuations of γ5 ⊗DF also
lead to global endomorphisms of the form γ5 ⊗ Φ, where Φ ∈ Γ∞(End(E)) (though this Φ would be more
restricted than in our construction). However, there may be components of DF that are not affected by
inner fluctuations, and hence remain constant (this occurs for instance for the Majorana masses of right-
handed neutrinos in the case of the noncommutative Standard Model [CCM07]). In the case of a principal
almost-commutative manifold, these components could be non-constant from the start. Hence, compared to
the case of product triples, derivatives of the field Φ might contain additional terms. This difference is not
yet visible in the general formulas above, but it may have consequences once we look at concrete examples
(see Remark 7.4).

6.4 Gauge theory

The results of this section can be summarised as follows, which is the main result of our paper:

Theorem 6.14. Let M be a smooth compact 4-dimensional Riemannian spin manifold. Consider a massive
even principal module I∞P = (B, E , DI , γI , JI) of KO-dimension k over M . Let ∇ be a GF -compatible
connection on E. If M is simply connected, then the principal almost-commutative manifold I∞P ×∇ M of
KO-dimension 4 + k (mod 8) describes a classical gauge theory over M with gauge group G(I∞P ×∇M).

Proof. The principal module I∞P is constructed from a principal GF -bundle P over M , such that B and E
are given by smooth sections of bundles associated to P. By assumption M is simply connected, so it follows
from Theorem 4.12 that we have the isomorphism G(I∞P ×∇M) ' G(P). We have seen in Section 6.2 that the
inner fluctuations transform a GF -compatible connection on E to another GF -compatible connection, which
hence corresponds to a connection on P (and by Proposition 6.9 any connection on P can be obtained in this
way). Finally, the spectral action and the fermionic action provide a gauge-invariant action functional (see
Proposition 6.11). Thus the principal almost-commutative manifold I∞P ×∇ M provides all the necessary
ingredients for a classical gauge theory over M , as described in Definition 2.13.

7 Examples

In this section we adapt two simple examples of (globally trivial) gauge theories in the context of noncommu-
tative geometry to the globally non-trivial case. In each example, we assume (as before) that the underlying
manifold M is a smooth compact 4-dimensional Riemannian spin manifold.

In Section 7.1 we describe the Yang-Mills case that was studied in [BS11], and provided the motivation
for this work. In particular, we show that the Yang-Mills case provides examples of principal modules that
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cannot be described by gauge modules. In Section 7.2 we discuss the abelian gauge theory of electrodynamics,
based on the (globally trivial) description in [DS13]. We will describe the resulting (globally non-trivial)
gauge theory, and provide explicit formulas for both the spectral action and the fermionic action.

7.1 Yang-Mills

Globally trivial Yang-Mills theory was already studied in the setting of spectral triples by Chamseddine and
Connes [CC97]. It is described by the (real, even) finite spectral triple

FYM := (MN (C),MN (C), DF = 0, JF = (·)∗, γF = id),

where the algebra MN (C) acts on the Hilbert space MN (C) by left-multiplication. The KO-dimension of
this spectral triple is 0 and the structure group GF is equal to PSU(N).

This has been generalised to the globally non-trivial case in [BS11]. Let B→M be an arbitrary ∗-algebra
bundle with fibre MN (C), and let B = Γ∞(B) be its unital, involutive C∞(M)-module algebra of sections.
We consider the real even internal space

I∞YM := (B,B, DI = 0, JI = (·)∗, γI = id).

For a general principal module P×GF F we do not know how to reconstruct the principal bundle P from
the module. However, in the Yang-Mills case we do.

Lemma 7.1. There exists a principal PSU(N)-bundle P → M (unique up to isomorphism) such that
I∞YM ' P×PSU(N) FYM.

Proof. The transition functions of the ∗-algebra bundle B take values in Aut(MN (C)) ' PSU(N) (where
PSU(N) acts on MN (C) by conjugation). Hence by Theorem 2.7 we can reconstruct a principal PSU(N)-
bundle P such that B ' P×PSU(N) MN (C). Since PSU(N) is the full automorphism group of the fibre, the
bundle P is uniquely defined.

Remark 7.2. Note that I∞YM will in general not be a gauge module. If this were the case, the structure group
PSU(N) of B could be lifted to U(N) by Proposition 5.2. This is only possible if the Dixmier-Douady class
δ(B) ∈ Ȟ3(M,Z) is identically zero (see e.g. [RW98, Ch.5] or [Sch09] for more details on Dixmier-Douady
classes), which is equivalent to saying that B is an endomorphism bundle (note that this is consistent with
the condition Bi = End(Ei) in Definition 5.1). Since not every ∗-algebra bundle with fibre MN (C) has zero
Dixmier-Douady class (see e.g. [Sch09]), this example shows that there exist principal modules that are not
gauge modules. However, in our description of gauge theories in Section 6 we have restricted our attention
to simply connected, 4-dimensional manifolds, and it turns out that in this case the Dixmier-Douady class
always vanishes (as we will prove below). It is unclear if there exist other examples of principal modules
that are not gauge modules.

Proposition 7.3. Let B be a ∗-algebra bundle with fibre MN (C) over a simply connected, 4-dimensional,
oriented, compact manifold M . Then the Dixmier-Douady class of B is identically zero.

Proof. Since M is simply connected, its fundamental group is trivial, and hence (see e.g. [Hat02, Theorem
2.A.1]) the first singular homology group H1(M,Z) is trivial. By Poincaré duality (see e.g. [Hat02, Propo-
sition 3.25 & Theorem 3.30]) it then follows that the third cohomology group H3(M,Z) is also trivial. The
Dixmier-Douady class by definition takes values in the third Čech cohomology group Ȟ3(M,Z). Since for
compact manifolds these cohomology groups are equal, it follows that Ȟ3(M,Z) is trivial and hence that
the Dixmier-Douady class of B must vanish.

A connection ∇ : B → B ⊗A Ω1(M) is PSU(N)-compatible (cf. Section 6.1) if and only if it satisfies the
algebraic identities (see [BS11, §3.2])

∇(ab) = ∇(a)b+ a∇(b), (∇a)∗ = ∇(a∗), ∀a, b ∈ B.

29



Such a connection thus corresponds to a connection form ω on P. If we pick any such connection, we can
then consider the (principal) almost-commutative manifold

I∞YM ×∇M :=
(
Γ∞(B), L2(B⊗ S), /DB, JI ⊗ JM , γI ⊗ γ5

)
.

If M is simply connected, the group G(I∞YM×∇M) is isomorphic to G(P), and I∞YM×∇M describes a PSU(N)
gauge theory (P, ω) over M . We denote the local connection form of ∇ by Bµ, and its curvature tensor by
Fµν . From Proposition 6.12 we find that the spectral action yields the Lagrangian

L(gµν , Bµ) = N2LM (gµν) + LYM(gµν , Bµ),

where the Yang-Mills Lagrangian is given (up to a normalisation constant) by the usual expression:

LYM(gµν , Bµ) :=
f(0)

24π2
tr(FµνF

µν).

7.2 Electrodynamics

The example of (globally trivial) Electrodynamics in the context of noncommutative geometry appeared in
[DS13]. Here we describe its generalisation to the globally non-trivial case. The finite spectral triple for
electrodynamics is given by [DS13]

FED := (C2,C4, DF , γF , JF ).

We shall generalise this finite triple to a massive even gauge module I∞ED over M . First, we set the algebra
B to be of the form

B := A⊕A = C∞(M)⊕ C∞(M).

Let L be a complex line bundle over M , with a given hermitian structure, so that its structure group is U(1).
We shall take two identical copies of this line bundle, which we denote by EL and ER, with smooth sections
EL = Γ∞(EL) and ER = Γ∞(ER). Then the Hilbert B −A-bimodule E is defined as

E := (EL ⊕ ER)⊕ (EL ⊕ ER),

where the first component of B acts on EL ⊕ ER, and the second component acts on its conjugate. On this
decomposition, the grading is defined as γI := 1⊕ (−1)⊕ (−1)⊕ 1. The real structure JI is the anti-linear
map EL,R 7→ EL,R and EL,R 7→ EL,R of KO-dimension 6 (see Definition 2.23). We then have the subalgebra
BJ ' A ⊂ B, where the injection is given by a 7→ a⊕ a. Imposing all conditions in Definition 6.1, the ‘mass
matrix’ DI is restricted to be of the form

DI :=


0 d 0 0

d 0 0 0

0 0 0 d
0 0 d 0

 ,

where d ∈ C∞(M) (see [DS13, §4.1.1]).

Remark 7.4. In order to interpret d as a mass parameter, it would have to be given by a single real-valued
parameter. For this reason we restrict ourselves to the case d = −im (see [DS13, Remark 4.4]). We stress
here that in general (as mentioned in Remark 3.2) the mass m is not a fixed parameter, but a function on
M (although it can be chosen to be constant). In other words, our framework allows the mass of a particle
to vary from point to point in M , so essentially the Yukuwa mass parameter is replaced by a Yukawa field.
This could of course have significant physical implications, which we intend to study in future work.

The module I∞ED = (B, E , DI , γI , JI) defined in this way is in fact a massive even gauge module. To be
precise, if we write E1 := Γ∞(L) = EL = ER and E2 := A, then we have B1 = EndA(E1) = Γ∞(L ⊗ L∗) ' A
and also B2 ' A. Furthermore, the module E can be written as

E '
⊕

(i,j)∈K

Ei ⊗A Ej , K :=
{

(1, 2), (1, 2), (2, 1), (2, 1)
}
.
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The hermitian structure on L determines a class of transition functions of L taking values in U(1), so
using Theorem 2.7 we can uniquely reconstruct a principal U(1)-bundle P, and we have I∞ED ' P ×U(1) FED

as massless modules (i.e. ignoring the mass matrices DF and DI).

Proposition 7.5. The gauge group is given by

G(I∞ED) ' U(B)/U(BJ) ' Γ∞(Ad P) ' C∞(M,U(1)).

Proof. Note that the group bundle Ad P 'M ×U(1) is globally trivial, because the structure group U(1) is
abelian.

As in Section 4.2.1, the main thing to prove is the surjectivity of the map φ∗ : U(B)→ Γ∞(Ad P), which
is given by φ∗(u) = uJuJ∗. But for u = (u1, u2) ∈ U(B), this map is given by

(u1, u2) 7→
(
u1u
∗
2 0

0 u2u
∗
1

)
,

so φ∗(u1, u2) can be identified with u1u
∗
2. Hence each v ∈ Γ∞(Ad P) ' C∞(M,U(1)) is the image of

(v, 1) ∈ U(B).

Remark 7.6. Note that in this particular example it is not necessary to require that M is simply connected,
as we did in the general case (see Theorem 4.12).

An element λ ∈ G(I∞ED) acts on EL ⊕ER as multiplication by λ, and acts on EL ⊕ER as multiplication by
λ.

Pick a connection ∇L on L, and let the connection ∇ on E be given by

∇ := ∇L ⊕∇L ⊕∇L ⊕∇L.

On a local trivialisation (say on a neighbourhood U), the connection ∇L is determined by a local connection
form ωL

U ∈ Ω1(U, iR), where iR is the Lie algebra of U(1). For the connection ∇ on E this yields the
connection form

ωU = ωL
U ⊕ ωL

U ⊕ ωL
U ⊕ ωL

U = ωL
U (1⊕ 1⊕ (−1)⊕ (−1)) ,

where the last equality follows because the action of ωL
U is given by (right) multiplication with ωL

U

∗
= −ωL

U .
Now consider the almost-commutative manifold I∞ED×∇M of KO-dimension 2, which (by Theorem 6.14)

describes a U(1)-gauge theory over M . Taking inner fluctuations simply amounts to choosing a different
connection ∇L (see Proposition 6.9), while there is no Higgs field (because DI commutes with B). Hence we
ignore these inner fluctuations, and simply consider the local gauge field Aµ := ωL

U(∂µ), on some coordinate
basis ∂µ. Its curvature is defined as Fµν := ∂µAν−∂νAµ. From Proposition 6.12 (see also [DS13, Proposition
4.2]) we find that the spectral action for I∞ED ×∇M is asymptotically given by the local formula

Sb(I
∞
ED ×∇M) ∼Λ→∞

∫
M

L(gµν , Aµ,m)
√
|g|d4x+O(Λ−1),

for

L(gµν , Aµ,m) := 4LM (gµν) + LA(gµν , Aµ) + LH(gµν ,m).

Here LM (gµν) is the Lagrangian Eq. (9), and LH(gµν ,m) yields additional terms depending on the mass m
and the scalar curvature s:

LH(gµν ,m) := −2f2Λ2m2

π2
+
f(0)m4

2π2
+
f(0)m2s

12π2
.

The Lagrangian for the gauge field is given by

LA(gµν , Aµ) :=
f(0)

6π2
FµνFµν .
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The interaction of the U(1) gauge field with the fermions is described by the fermionic action, and is
given by (see [DS13, Proposition 4.3 and Theorem 4.5])

Sf (I∞ED ×∇M) =

∫
M

Lf (gµν , Aµ,m)
√
|g|d4x,

for the Lagrangian

Lf (gµν , Aµ,m) := −i
(
JM χ̃,

(
γµ(∇Sµ −Aµ)−m

)
ψ̃
)
,

where χ and ψ are two Dirac spinors in L2(S). We summarise this as follows:

Proposition 7.7. The total Lagrangian for I∞ED ×∇M is given by a gravitational part

Lgrav(gµν ,m) := 4LM (gµν) + LH(gµν ,m),

and a part for electrodynamics

LED(gµν , Aµ,m) := −i
(
JM χ̃,

(
γµ(∇Sµ −Aµ)−m

)
ψ̃
)

+
f(0)

6π2
FµνFµν .

8 Outlook

One of the main ideas in the development of noncommutative geometry has been the translation of geometric
data into (operator-)algebraic data. In this light, it is somewhat unsatisfactory that our definition of principal
modules relies entirely on the geometric notion of a principal bundle. Our discussion of gauge modules is
an attempt to provide a purely algebraic approach, but as we have shown, these gauge modules only yield a
proper subclass of principal modules. It is still an open question how arbitrary principal modules should be
described algebraically, that is, what algebraic structure on a triplet (B, E , J) would completely characterise
the properties of a principal module. The decompositions E = ⊕i,j∈IEij and B = ⊕Bi (as described in
Section 4.2.1) are not yet enough to ensure that (B, E , J) is a principal module. On the other hand, the
condition that Eij = Ei ⊗A Ej (modulo multiplicities) along with Bi = End(Ei), as for gauge modules, is in
fact too strong.

As mentioned in Remark 4.8, the principal bundle P can only be reconstructed from the associated vector
bundle E = P ×GF HF if we also know the corresponding equivalence class of GF -atlases. It is not clear
if there exists a geometric structure on E, for which this equivalence class corresponds precisely to those
transition functions that preserve the geometric structure. If one has such a geometric structure on E, this
might provide the possibility of finding an algebraic equivalent structure on the module E . We intend to
return to these questions in the future.

In Section 7 we described two basic examples, namely Yang-Mills theory and electrodynamics. It would of
course be more interesting to also put the description of the noncommutative Standard Model [CCM07] into
our globally non-trivial framework. This should certainly be possible, though it would require some small
modifications to accommodate real algebras (in this paper we have always assumed that our algebras are
complex). In particular, for real algebras the resulting gauge group would not automatically be unimodular
(see also Remark 4.13), and one would have to impose unimodularity by hand (as in [CCM07, §2.5]). More
importantly, as we also mentioned in Remarks 3.2 and 7.4, in our framework the mass parameters (i.e. the
Yukawa couplings and the Majorana terms) of the theory are not restricted to be constant, but they are
allowed to vary on spacetime. Such variation of the Majorana mass then naturally leads to a new scalar
field σ, which was used in [CC12] to restore the consistency of the noncommutative Standard Model with
the experimental value of the Higgs mass. In addition however, the variation of the Yukawa couplings will
also have its effect on the physical theory. We hope to provide a more detailed study of these physical
implications in a future work.
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