11 research outputs found

    On a class of stable, traversable Lorentzian wormholes in classical general relativity

    Get PDF
    It is known that Lorentzian wormholes must be threaded by matter that violates the null energy condition. We phenomenologically characterize such exotic matter by a general class of microscopic scalar field Lagrangians and formulate the necessary conditions that the existence of Lorentzian wormholes imposes on them. Under rather general assumptions, these conditions turn out to be strongly restrictive. The most simple Lagrangian that satisfies all of them describes a minimally coupled massless scalar field with a reversed sign kinetic term. Exact, non-singular, spherically symmetric solutions of Einstein's equations sourced by such a field indeed describe traversable wormhole geometries. These wormholes are characterized by two parameters: their mass and charge. Among them, the zero mass ones are particularly simple, allowing us to analytically prove their stability under arbitrary space-time dependent perturbations. We extend our arguments to non-zero mass solutions and conclude that at least a non-zero measure set of these solutions is stable.Comment: 23 pages, 4 figures, uses RevTeX4. v2: Changes to accommodate added references. Statement about masses of the wormhole correcte

    Spinors, Inflation, and Non-Singular Cyclic Cosmologies

    Get PDF
    We consider toy cosmological models in which a classical, homogeneous, spinor field provides a dominant or sub-dominant contribution to the energy-momentum tensor of a flat Friedmann-Robertson-Walker universe. We find that, if such a field were to exist, appropriate choices of the spinor self-interaction would generate a rich variety of behaviors, quite different from their widely studied scalar field counterparts. We first discuss solutions that incorporate a stage of cosmic inflation and estimate the primordial spectrum of density perturbations seeded during such a stage. Inflation driven by a spinor field turns out to be unappealing as it leads to a blue spectrum of perturbations and requires considerable fine-tuning of parameters. We next find that, for simple, quartic spinor self-interactions, non-singular cyclic cosmologies exist with reasonable parameter choices. These solutions might eventually be incorporated into a successful past- and future-eternal cosmological model free of singularities. In an Appendix, we discuss the classical treatment of spinors and argue that certain quantum systems might be approximated in terms of such fields.Comment: 12 two-column pages, 3 figures; uses RevTeX

    Solutions to the cosmological constant problems

    Get PDF
    We critically review several recent approaches to solving the two cosmological constant problems. The "old" problem is the discrepancy between the observed value of Λ\Lambda and the large values suggested by particle physics models. The second problem is the "time coincidence" between the epoch of galaxy formation tGt_G and the epoch of Λ\Lambda-domination t_\L. It is conceivable that the "old" problem can be resolved by fundamental physics alone, but we argue that in order to explain the "time coincidence" we must account for anthropic selection effects. Our main focus here is on the discrete-Λ\Lambda models in which Λ\Lambda can change through nucleation of branes. We consider the cosmology of this type of models in the context of inflation and discuss the observational constraints on the model parameters. The issue of multiple brane nucleation raised by Feng {\it et. al.} is discussed in some detail. We also review continuous-\L models in which the role of the cosmological constant is played by a slowly varying potential of a scalar field. We find that both continuous and discrete models can in principle solve both cosmological constant problems, although the required values of the parameters do not appear very natural. M-theory-motivated brane models, in which the brane tension is determined by the brane coupling to the four-form field, do not seem to be viable, except perhaps in a very tight corner of the parameter space. Finally, we point out that the time coincidence can also be explained in models where Λ\Lambda is fixed, but the primordial density contrast Q=δρ/ρQ=\delta\rho/\rho is treated as a random variable.Comment: 30 pages, 3 figures, two notes adde

    Predictions and Observations in Theories with Varying Couplings

    Get PDF
    We consider a toy universe containing conventional matter and an additional real scalar field, and discuss how the requirements of gauge and diffeomorphism invariance essentially single out a particular set of theories which might describe such a world at low energies. In these theories, fermion masses and g-factors, as well as the electromagnetic coupling turn to be scalar field dependent; fermion charges and the gravitational coupling might be assumed to be constant. We then proceed to study the impact of a time variation of the scalar field on measurements of atomic spectra at high redshifts. Light propagation is not affected by a sufficiently slow change of the fine structure constant, but changes of the latter as well as variations of fermion masses and g-factors do affect the observed atomic spectra. Finally, we prove the independence of these predictions on the chosen conformal frame, in a further attempt to address differing views about the subject expressed in the literature.Comment: 19 pages, no figures; uses RevTeX

    OmOm Diagnostic for Dilaton Dark Energy

    Full text link
    OmOm diagnostic can differentiate between different models of dark energy without the accurate current value of matter density. We apply this geometric diagnostic to dilaton dark energy(DDE) model and differentiate DDE model from LCDM. We also investigate the influence of coupled parameter α\alpha on the evolutive behavior of OmOm with respect to redshift zz. According to the numerical result of OmOm, we get the current value of equation of state ωσ0\omega_{\sigma0}=-0.952 which fits the WMAP5+BAO+SN very well.Comment: 6 pages and 6 figures

    Anisotropic Inflation and the Origin of Four Large Dimensions

    Get PDF
    In the context of (4+d)-dimensional general relativity, we propose an inflationary scenario wherein 3 spatial dimensions grow large, while d extra dimensions remain small. Our model requires that a self-interacting d-form acquire a vacuum expectation value along the extra dimensions. This causes 3 spatial dimensions to inflate, whilst keeping the size of the extra dimensions nearly constant. We do not require an additional stabilization mechanism for the radion, as stable solutions exist for flat, and for negatively curved compact extra dimensions. From a four-dimensional perspective, the radion does not couple to the inflaton; and, the small amplitude of the CMB temperature anisotropies arises from an exponential suppression of fluctuations, due to the higher-dimensional origin of the inflaton. The mechanism triggering the end of inflation is responsible, both, for heating the universe, and for avoiding violations of the equivalence principle due to coupling between the radion and matter.Comment: 24 pages, 2 figures; uses RevTeX4. v2: Minor changes and added references. v3: Improved discussion of slow-rol

    Could dark energy be vector-like?

    Get PDF
    In this paper I explore whether a vector field can be the origin of the present stage of cosmic acceleration. In order to avoid violations of isotropy, the vector has be part of a ``cosmic triad'', that is, a set of three identical vectors pointing in mutually orthogonal spatial directions. A triad is indeed able to drive a stage of late accelerated expansion in the universe, and there exist tracking attractors that render cosmic evolution insensitive to initial conditions. However, as in most other models, the onset of cosmic acceleration is determined by a parameter that has to be tuned to reproduce current observations. The triad equation of state can be sufficiently close to minus one today, and for tachyonic models it might be even less than that. I briefly analyze linear cosmological perturbation theory in the presence of a triad. It turns out that the existence of non-vanishing spatial vectors invalidates the decomposition theorem, i.e. scalar, vector and tensor perturbations do not decouple from each other. In a simplified case it is possible to analytically study the stability of the triad along the different cosmological attractors. The triad is classically stable during inflation, radiation and matter domination, but it is unstable during (late-time) cosmic acceleration. I argue that this instability is not likely to have a significant impact at present.Comment: 28 pages, 6 figures. Uses RevTeX4. v2: Discussion about relation to phantoms added and additional references cite

    Localized D-dimensional global k-defects

    Full text link
    We explicitly demonstrate the existence of static global defect solutions of arbitrary dimensionality whose energy does not diverge at spatial infinity, by considering maximally symmetric solutions described by an action with non-standard kinetic terms in a D+1 dimensional Minkowski space-time. We analytically determine the defect profile both at small and large distances from the defect centre. We verify the stability of such solutions and discuss possible implications of our findings, in particular for dark matter and charge fractionalization in graphene.Comment: 6 pages, published versio

    Regular black holes and black universes

    Get PDF
    We give a comparative description of different types of regular static, spherically symmetric black holes (BHs) and discuss in more detail their particular type, which we suggest to call black universes. The latter have a Schwarzschild-like causal structure, but inside the horizon there is an expanding Kantowski-Sachs universe and a de Sitter infinity instead of a singularity. Thus a hypothetic BH explorer gets a chance to survive. Solutions of this kind are naturally obtained if one considers static, spherically symmetric distributions of various (but not all) kinds of phantom matter whose existence is favoured by cosmological observations. It also looks possible that our Universe has originated from phantom-dominated collapse in another universe and underwent isotropization after crossing the horizon. An explicit example of a black-universe solution with positive Schwarzschild mass is discussed.Comment: 13 pages, 1 figure. 6 referenses and some discussion added, misprints correcte

    Cosmological implications of interacting polytropic gas dark energy model in non-flat universe

    Full text link
    The polytropic gas model is investigated as an interacting dark energy scenario. The cosmological implications of the model including the evolution of EoS parameter wΛw_{\Lambda}, energy density ΩΛ\Omega_{\Lambda} and deceleration parameter qq are investigated. We show that, depending on the parameter of model, the interacting polytropic gas can behave as a quintessence or phantom dark energy. In this model, the phantom divide is crossed from below to up. The evolution of qq in the context of polytropic gas dark energy model represents the decelerated phase at the early time and accelerated phase later. The singularity of this model is also discussed. Eventually, we establish the correspondence between interacting polytropic gas model with tachyon, K-essence and dilaton scalar fields. The potential and the dynamics of these scalar field models are reconstructed according to the evolution of interacting polytropic gas.Comment: 19 pages, 3 figures, accepted by ijt
    corecore